CIS Amazon Web Services Foundations Benchmark v1.5.0 - 08-12-2022 # **Terms of Use** | Please see | the be | low lin | nk for | Our | current | terms of | fuse. | |-------------|--|---------|---------|-----|---------|----------|--------| | I ICASC SCC | $u \cup v $ | | 111 101 | oui | CULLCIL | LCITIO O | ı usc. | https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/ # **Table of Contents** | Terms of Use | 1 | |--|----| | Table of Contents | 2 | | Overview | 5 | | Intended Audience | 5 | | Consensus Guidance | 6 | | Typographical Conventions | 7 | | Recommendation Definitions | 8 | | Title | 8 | | Assessment Status Automated | 8 | | Profile | 8 | | Description | | | Rationale Statement | | | Impact Statement | | | Audit Procedure | | | Remediation Procedure | | | Default Value | | | References | | | | | | CIS Critical Security Controls® (CIS Controls®) | | | Additional Information | | | Profile Definitions | | | Acknowledgements | 11 | | Recommendations | 14 | | 1 Identity and Access Management | 14 | | 1.1 Maintain current contact details (Manual) | | | 1.2 Ensure security contact information is registered (Manual) | 17 | | 1.3 Ensure security questions are registered in the AWS account (Manual) | 19 | | 1.4 Ensure no 'root' user account access key exists (Automated) | 21 | | 1.5 Ensure MFA is enabled for the 'root' user account (Automated) | 23 | | 1.6 Ensure hardware MFA is enabled for the 'root' user account (Automated) | 26 | | 1.7 Eliminate use of the 'root' user for administrative and daily tasks (Automated) | 29 | | 1.8 Ensure IAM password policy requires minimum length of 14 or greater (Automated) | 31 | | 1.9 Ensure IAM password policy prevents password reuse (Automated) | 33 | | 1.10 Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console pas | | | (Automated) | 35 | | | 1.11 Do not setup access keys during initial user setup for all IAM users that have a console password (Automated) | 38 | |--------|--|-----| | | 1.12 Ensure credentials unused for 45 days or greater are disabled (Automated) | | | | 1.13 Ensure there is only one active access key available for any single IAM user (Automated) | | | | 1.14 Ensure access keys are rotated every 90 days or less (Automated) | | | | 1.15 Ensure IAM Users Receive Permissions Only Through Groups (Automated) | | | | 1.16 Ensure IAM policies that allow full "*:*" administrative privileges are not attached (Automated) | | | | 1.17 Ensure a support role has been created to manage incidents with AWS Support (Automated) | | | | 1.18 Ensure IAM instance roles are used for AWS resource access from instances (Manual) | | | | 1.19 Ensure that all the expired SSL/TLS certificates stored in AWS IAM are removed (Automated) | 61 | | | 1.20 Ensure that IAM Access analyzer is enabled for all regions (Automated) | .64 | | | 1.21 Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments (Manual) | 67 | | Stor | age | 69 | | | imple Storage Service (S3) | | | | 2.1.1 Ensure all S3 buckets employ encryption-at-rest (Automated) | | | | 2.1.2 Ensure S3 Bucket Policy is set to deny HTTP requests (Automated) | | | | 2.1.3 Ensure MFA Delete is enabled on S3 buckets (Automated) | | | | 2.1.4 Ensure all data in Amazon S3 has been discovered, classified and secured when required. (Manu | | | | 2.1.5 Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' (Automated) | .83 | | 2.2 E | lastic Compute Cloud (EC2) | 87 | | | 2.2.1 Ensure EBS Volume Encryption is Enabled in all Regions (Automated) | .88 | | 2.3 R | elational Database Service (RDS) | .91 | | | 2.3.1 Ensure that encryption is enabled for RDS Instances (Automated) | .92 | | | 2.3.2 Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances (Automated) | | | | 2.3.3 Ensure that public access is not given to RDS Instance (Automated) | | | 2.4 E | lastic File System (EFS)1 | | | | 2.4.1 Ensure that encryption is enabled for EFS file systems (Manual) | 105 | | 3 Load | ging1 | 09 | | 9, | 3.1 Ensure CloudTrail is enabled in all regions (Automated) | 110 | | | 3.2 Ensure CloudTrail log file validation is enabled (Automated) | | | | 3.3 Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible (Automated) | | | | 3.4 Ensure CloudTrail trails are integrated with CloudWatch Logs (Automated) | | | | 3.5 Ensure AWS Config is enabled in all regions (Automated) | 121 | | | 3.6 Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket (Automated) | 125 | | | 3.7 Ensure CloudTrail logs are encrypted at rest using KMS CMKs (Automated) | 129 | | | 3.8 Ensure rotation for customer created symmetric CMKs is enabled (Automated) | 133 | | | 3.9 Ensure VPC flow logging is enabled in all VPCs (Automated) | 136 | | | 3.10 Ensure that Object-level logging for write events is enabled for S3 bucket (Automated) | | | | 3.11 Ensure that Object-level logging for read events is enabled for S3 bucket (Automated) | 143 | | 1 Mon | itoring1 | 46 | | | 4.1 Ensure a log metric filter and alarm exist for unauthorized API calls (Automated) | | | | 4.2 Ensure a log metric filter and alarm exist for Management Console sign-in without MFA (Automated |) | | | 4.3 Ensure a log metric filter and alarm exist for usage of 'root' account (Automated) | | | | 4.4 Ensure a log metric filter and alarm exist for IAM policy changes (Automated) | | | | 4.5 Ensure a log metric filter and alarm exist for CloudTrail configuration changes (Automated) | | | | 4.6 Ensure a log metric filter and alarm exist for AWS Management Console authentication failures (Automated) | 167 | | | 4.7 Ensure a log metric filter and alarm exist for disabling or scheduled deletion of customer created (Automated) | | |--------|--|-------| | | 4.8 Ensure a log metric filter and alarm exist for S3 bucket policy changes (Automated) | | | | 4.9 Ensure a log metric filter and alarm exist for AWS Config configuration changes (Automated) | 179 | | | 4.10 Ensure a log metric filter and alarm exist for security group changes (Automated) | 183 | | | 4.11 Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) | 107 | | | (Automated) | | | | 4.13 Ensure a log metric filter and alarm exist for route table changes (Automated) | | | | 4.14 Ensure a log metric filter and alarm exist for VPC changes (Automated) | | | | 4.15 Ensure a log metric filter and alarm exists for AWS Organizations changes (Automated) | | | | 4.16 Ensure AWS Security Hub is enabled (Automated) | 207 | | 5 Netv | working | 209 | | | 5.1 Ensure no Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports | | | | (Automated) | 210 | | | 5.2 Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports (Automated) | 212 | | | 5.3 Ensure no security groups allow ingress from ::/0 to remote server administration ports (Automate | ed) | | | 5.4 Ensure the default security group of every VPC restricts all traffic (Automated) | | | | 5.5 Ensure routing tables for VPC peering are "least access" (Manual) | | | Appen | ndix: Summary Table | . 221 | | Appen | ndix: CIS Controls v7 IG 1 Mapped Recommendations | . 227 | | Appen | ndix: CIS Controls v7 IG 2 Mapped Recommendations | . 229 | | Appen | ndix: CIS Controls v7 IG 3 Mapped Recommendations | . 232 | | Appen | ndix: CIS Controls v7 Unmapped Recommendations | . 235 | | Appen | ndix: CIS Controls v8 IG 1 Mapped Recommendations | . 236 | | | ndix: CIS Controls v8 IG 2 Mapped Recommendations | | | | ndix: CIS Controls v8 IG 3 Mapped Recommendations | | | | ndix: CIS Controls v8 Unmapped Recommendations | | | | ndix: Change History | . 246 | # **Overview** All CIS Benchmarks focus on technical configuration settings used to maintain and/or increase the security of the addressed technology, and they should be used in **conjunction** with other essential cyber hygiene tasks like: - Monitoring the base operating system for vulnerabilities and quickly updating with the latest security patches - Monitoring applications and libraries for vulnerabilities and quickly updating with the latest security patches In the end, the CIS Benchmarks are designed as a key **component** of a comprehensive cybersecurity program. This document provides prescriptive guidance for configuring security options for a subset of Amazon Web Services with an emphasis on foundational, testable, and architecture agnostic settings. Some of the specific Amazon Web Services in scope for this document include: - AWS Identity and Access Management (IAM) - IAM Access Analyzer - AWS Config - AWS CloudTrail - AWS CloudWatch - AWS Simple Notification Service (SNS) - AWS Simple Storage Service (S3) - Elastic Compute Cloud (EC2) - Relational Database Service (RDS) - AWS VPC To obtain the latest version of this guide, please visit https://benchmarks.cisecurity.org. If you have questions, comments, or have identified ways to improve this guide, please write us at BenchmarkInfo@cisecurity.org. # **Intended Audience** This document is intended for system and application administrators, security specialists, auditors, help desk, platform deployment, and/or DevOps personnel who plan to develop, deploy, assess, or secure solutions in Amazon Web Services. ## **Consensus Guidance** This CIS Benchmark was created using a consensus review process comprised of a global community of
subject matter experts. The process combines real world experience with data-based information to create technology specific guidance to assist users to secure their environments. Consensus participants provide perspective from a diverse set of backgrounds including consulting, software development, audit and compliance, security research, operations, government, and legal. Each CIS Benchmark undergoes two phases of consensus review. The first phase occurs during initial Benchmark development. During this phase, subject matter experts convene to discuss, create, and test working drafts of the Benchmark. This discussion occurs until consensus has been reached on Benchmark recommendations. The second phase begins after the Benchmark has been published. During this phase, all feedback provided by the Internet community is reviewed by the consensus team for incorporation in the Benchmark. If you are interested in participating in the consensus process, please visit https://workbench.cisecurity.org/. # **Typographical Conventions** The following typographical conventions are used throughout this guide: | Convention | Meaning | |---|---| | Stylized Monospace font | Used for blocks of code, command, and script examples. Text should be interpreted exactly as presented. | | Monospace font | Used for inline code, commands, or examples. Text should be interpreted exactly as presented. | | <italic brackets="" font="" in=""></italic> | Italic texts set in angle brackets denote a variable requiring substitution for a real value. | | Italic font | Used to denote the title of a book, article, or other publication. | | Note | Additional information or caveats | # **Recommendation Definitions** The following defines the various components included in a CIS recommendation as applicable. If any of the components are not applicable it will be noted or the component will not be included in the recommendation. ## **Title** Concise description for the recommendation's intended configuration. ## **Assessment Status** An assessment status is included for every recommendation. The assessment status indicates whether the given recommendation can be automated or requires manual steps to implement. Both statuses are equally important and are determined and supported as defined below: #### **Automated** Represents recommendations for which assessment of a technical control can be fully automated and validated to a pass/fail state. Recommendations will include the necessary information to implement automation. #### **Manual** Represents recommendations for which assessment of a technical control cannot be fully automated and requires all or some manual steps to validate that the configured state is set as expected. The expected state can vary depending on the environment. ## **Profile** A collection of recommendations for securing a technology or a supporting platform. Most benchmarks include at least a Level 1 and Level 2 Profile. Level 2 extends Level 1 recommendations and is not a standalone profile. The Profile Definitions section in the benchmark provides the definitions as they pertain to the recommendations included for the technology. # **Description** Detailed information pertaining to the setting with which the recommendation is concerned. In some cases, the description will include the recommended value. # **Rationale Statement** Detailed reasoning for the recommendation to provide the user a clear and concise understanding on the importance of the recommendation. # **Impact Statement** Any security, functionality, or operational consequences that can result from following the recommendation. ## **Audit Procedure** Systematic instructions for determining if the target system complies with the recommendation # **Remediation Procedure** Systematic instructions for applying recommendations to the target system to bring it into compliance according to the recommendation. # **Default Value** Default value for the given setting in this recommendation, if known. If not known, either not configured or not defined will be applied. # References Additional documentation relative to the recommendation. # CIS Critical Security Controls® (CIS Controls®) The mapping between a recommendation and the CIS Controls is organized by CIS Controls version, Safeguard, and Implementation Group (IG). The Benchmark in its entirety addresses the CIS Controls safeguards of (v7) "5.1 - Establish Secure Configurations" and (v8) '4.1 - Establish and Maintain a Secure Configuration Process" so individual recommendations will not be mapped to these safeguards. # **Additional Information** Supplementary information that does not correspond to any other field but may be useful to the user. # **Profile Definitions** The following configuration profiles are defined by this Benchmark: #### Level 1 Items in this profile intend to: - be practical and prudent; - o provide security focused best practice hardening of a technology; and - o limit impact to the utility of the technology beyond acceptable means. #### Level 2 This profile extends the "Level 1" profile. Items in this profile exhibit one or more of the following characteristics: - are intended for environments or use cases where security is more critical than manageability and usability - o acts as defense in depth measure - o may impact the utility or performance of the technology - o may include additional licensing, cost, or addition of third party software # **Acknowledgements** This Benchmark exemplifies the great things a community of users, vendors, and subject matter experts can accomplish through consensus collaboration. The CIS community thanks the entire consensus team with special recognition to the following individuals who contributed greatly to the creation of this guide: #### Contributor **Cindy Spiess** Blake Frantz Gavin Fitzpatrick Amol Pathak James Covington **Rob Witoff** John Martinez Tim Sandage Mike De Libero Adam Montville Darwin Sanoy Gregory Frascadore Ionut Dragoi John Robel **Brent Harrison** Mike Wicks Aditi Sahasrabudhe Jeremy Phillips Ankit Rao Steve Laino Lawrence Sica Nick Gibbon Lewis Hardy **Grant Dobbe** Logan McMillan Sara Archacki Darren Joyce Rachel Rice Bhushan Bhat Bob Masucci Zan Liffick Sagar Chhatrala Nirbhay Kumar Ian McRee #### **Editor** Iben Rodriguez Parag Patil Pradeep R B **Gregory Carpenter** Maril Vernon Paul Campbell # Recommendations # 1 Identity and Access Management This section contains recommendations for configuring identity and access management related options. # 1.1 Maintain current contact details (Manual) ### **Profile Applicability:** Level 1 #### **Description:** Ensure contact email and telephone details for AWS accounts are current and map to more than one individual in your organization. An AWS account supports a number of contact details, and AWS will use these to contact the account owner if activity judged to be in breach of Acceptable Use Policy or indicative of likely security compromise is observed by the AWS Abuse team. Contact details should not be for a single individual, as circumstances may arise where that individual is unavailable. Email contact details should point to a mail alias which forwards email to multiple individuals within the organization; where feasible, phone contact details should point to a PABX hunt group or other call-forwarding system. #### Rationale: If an AWS account is observed to be behaving in a prohibited or suspicious manner, AWS will attempt to contact the account owner by email and phone using the contact details listed. If this is unsuccessful and the account behavior needs urgent mitigation, proactive measures may be taken, including throttling of traffic between the account exhibiting suspicious behavior and the AWS API endpoints and the Internet. This will result in impaired service to and from the account in question, so it is in both the customers' and AWS' best interests that prompt contact can be established. This is best achieved by setting AWS account contact details to point to resources which have multiple individuals as recipients, such as email aliases and PABX hunt groups. #### Audit: This activity can only be performed via the AWS Console, with a user who has permission to read and write Billing information (aws-portal:*Billing) - 1. Sign in to the AWS Management Console and open the Billing and Cost Management console at https://console.aws.amazon.com/billing/home#/. - 2. On the navigation bar, choose your account name, and then choose My Account. - 3. On the Account Settings page, review and verify the current details. - 4. Under Contact Information, review and verify the current details. #### Remediation: This activity can only be performed via the AWS Console, with a user who has permission to read and write Billing information (aws-portal:*Billing). Sign in to the AWS Management Console and open the Billing and Cost Management console at https://console.aws.amazon.com/billing/home#/. - 2. On the navigation bar, choose your account name, and then choose My Account. - 3. On the Account Settings page, next to Account Settings, choose Edit. - 4. Next to the field that you need to update, choose Edit. - 5. After you have entered your changes, choose Save changes. - 6. After you have made your changes, choose Done. - 7. To edit your contact information, under Contact Information, choose Edit. - 8. For the fields that you want to change, type your updated information, and then choose Update. #### References: 1. https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-account-payment.html#contact-info |
Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 17.2 Establish and Maintain Contact Information for Reporting Security Incidents Establish and maintain contact information for parties that need to be informed of security incidents. Contacts may include internal staff, third-party vendors, law enforcement, cyber insurance providers, relevant government agencies, Information Sharing and Analysis Center (ISAC) partners, or other stakeholders. Verify contacts annually to ensure that information is up-to-date. | • | • | • | | v7 | 19.3 Designate Management Personnel to Support Incident Handling Designate management personnel, as well as backups, who will support the incident handling process by acting in key decision-making roles. | • | • | • | # 1.2 Ensure security contact information is registered (Manual) # **Profile Applicability:** Level 1 #### **Description:** AWS provides customers with the option of specifying the contact information for account's security team. It is recommended that this information be provided. #### Rationale: Specifying security-specific contact information will help ensure that security advisories sent by AWS reach the team in your organization that is best equipped to respond to them. #### Audit: Perform the following to determine if security contact information is present: #### From Console: - 1. Click on your account name at the top right corner of the console - 2. From the drop-down menu Click My Account - 3. Scroll down to the Alternate Contacts section - 4. Ensure contact information is specified in the security section #### Remediation: Perform the following to establish security contact information: #### From Console: - 1. Click on your account name at the top right corner of the console. - 2. From the drop-down menu Click My Account - 3. Scroll down to the Alternate Contacts section - 4. Enter contact information in the security section **Note:** Consider specifying an internal email distribution list to ensure emails are regularly monitored by more than one individual. #### References: 1. CCE-79200-2 | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 17.2 Establish and Maintain Contact Information for Reporting Security Incidents Establish and maintain contact information for parties that need to be informed of security incidents. Contacts may include internal staff, third-party vendors, law enforcement, cyber insurance providers, relevant government agencies, Information Sharing and Analysis Center (ISAC) partners, or other stakeholders. Verify contacts annually to ensure that information is up-to-date. | • | • | • | | v8 | 17.6 <u>Define Mechanisms for Communicating During Incident Response</u> Determine which primary and secondary mechanisms will be used to communicate and report during a security incident. Mechanisms can include phone calls, emails, or letters. Keep in mind that certain mechanisms, such as emails, can be affected during a security incident. Review annually, or when significant enterprise changes occur that could impact this Safeguard. | | • | • | | v7 | 19 Incident Response and Management Incident Response and Management | | | | | v7 | 19.2 <u>Assign Job Titles and Duties for Incident Response</u> Assign job titles and duties for handling computer and network incidents to specific individuals and ensure tracking and documentation throughout the incident through resolution. | | • | • | # 1.3 Ensure security questions are registered in the AWS account (Manual) # **Profile Applicability:** Level 1 #### **Description:** The AWS support portal allows account owners to establish security questions that can be used to authenticate individuals calling AWS customer service for support. It is recommended that security questions be established. #### Rationale: When creating a new AWS account, a default super user is automatically created. This account is referred to as the 'root user' or 'root' account. It is recommended that the use of this account be limited and highly controlled. During events in which the 'root' password is no longer accessible or the MFA token associated with 'root' is lost/destroyed it is possible, through authentication using secret questions and associated answers, to recover 'root' user login access. #### Audit: #### From Console: - 1. Login to the AWS account as the 'root' user - 2. On the top right you will see the <Root Account Name> - 3. Click on the <Root Account Name> - 4. From the drop-down menu Click My Account - 5. In the Configure Security Challenge Questions section on the Personal Information page, configure three security challenge questions. - 6. Click Save questions. #### Remediation: #### From Console: - 1. Login to the AWS Account as the 'root' user - 2. Click on the <Root Account Name> from the top right of the console - 3. From the drop-down menu Click My Account - 4. Scroll down to the Configure Security Questions section - 5. Click on Edit - 6. Click on each Ouestion - From the drop-down select an appropriate question - Click on the Answer section - Enter an appropriate answer Follow process for all 3 questions - 7. Click Update when complete8. Save Questions and Answers and place in a secure physical location | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 17.2 Establish and Maintain Contact Information for Reporting Security Incidents Establish and maintain contact information for parties that need to be informed of security incidents. Contacts may include internal staff, third-party vendors, law enforcement, cyber insurance providers, relevant government agencies, Information Sharing and Analysis Center (ISAC) partners, or other stakeholders. Verify contacts annually to ensure that information is up-to-date. | • | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 1.4 Ensure no 'root' user account access key exists (Automated) ## **Profile Applicability:** Level 1 #### **Description:** The 'root' user account is the most privileged user in an AWS account. AWS Access Keys provide programmatic access to a given AWS account. It is recommended that all access keys associated with the 'root' user account be removed. #### Rationale: Removing access keys associated with the 'root' user account limits vectors by which the account can be compromised. Additionally, removing the 'root' access keys encourages the creation and use of role based accounts that are least privileged. #### Audit: Perform the following to determine if the 'root' user account has access keys: #### From Console: - 1. Login to the AWS Management Console - 2. Click Services - 3. Click IAM - 4. Click on Credential Report - 5. This will download a .csv file which contains credential usage for all IAM users within an AWS Account open this file - 6. For the <root_account> user, ensure the access_key_1_active and access key 2 active fields are set to FALSE. #### From Command Line: Run the following command: ``` aws iam get-account-summary | grep "AccountAccessKeysPresent" ``` If no 'root' access keys exist the output will show "AccountAccessKeysPresent": 0,. If the output shows a "1" than 'root' keys exist, refer to the remediation procedure below. #### Remediation: Perform the following to delete or disable active 'root' user access keys **From Console:** - 1. Sign in to the AWS Management Console as 'root' and open the IAM console at https://console.aws.amazon.com/iam/. - 2. Click on <Root_Account_Name> at the top right and select My Security Credentials from the drop down list - 3. On the pop out screen Click on Continue to Security Credentials - 4. Click on Access Keys (Access Key ID and Secret Access Key) - 5. Under the Status column if there are any Keys which are Active - Click on Make Inactive (Temporarily disable Key may be needed again) - Click Delete (Deleted keys cannot be recovered) #### References: - 1. http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html - 2. http://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html - 3. http://docs.aws.amazon.com/IAM/latest/APIReference/API GetAccountSummary .html - 4. CCE-78910-7 - 5. https://aws.amazon.com/blogs/security/an-easier-way-to-determine-the-presence-of-aws-account-access-keys/ #### **Additional Information:** IAM User account "root" for us-gov cloud regions is not enabled by default. However, on request to AWS support enables 'root' access only through access-keys (CLI, API methods) for us-gov cloud region. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v8 | 5.4 Restrict Administrator Privileges to Dedicated Administrator Accounts Restrict administrator privileges to dedicated administrator accounts on enterprise assets. Conduct general computing activities, such as internet browsing, email, and productivity suite use, from the user's primary, non-privileged account. | • | • | • | | v7 | 4.3 Ensure the Use of Dedicated Administrative Accounts Ensure that all users with administrative account access use a dedicated or secondary account for elevated activities. This account should only be used for administrative activities and not internet browsing, email, or similar activities. | • | • | • | # 1.5 Ensure MFA is enabled for the 'root' user account (Automated) # **Profile Applicability:** Level 1 #### **Description:** The 'root' user account is the most privileged user in an AWS account. Multi-factor Authentication (MFA) adds an extra layer of protection on top of a username and password. With MFA enabled, when a user signs in to an AWS website, they will be prompted for their username and password as well as for an authentication code from their AWS MFA device. **Note:** When virtual MFA is used for 'root' accounts, it is recommended that the device used is NOT a personal device, but rather a dedicated mobile device (tablet or phone) that is managed to be kept charged and secured independent of any individual personal devices. ("non-personal virtual MFA") This lessens the risks of losing access to the MFA due to device loss, device trade-in or if the individual owning the device is no longer employed at the company. #### Rationale: Enabling MFA provides increased security for console access as it requires the authenticating principal to possess a device that emits a time-sensitive key and have knowledge of a credential. #### Audit: Perform the following to determine if the 'root' user account has MFA setup: #### From Console: - 1. Login to the AWS Management Console - 2. Click Services - 3. Click IAM - 4. Click on Credential Report - 5. This will download a .csv file which contains credential usage for all IAM users within an AWS Account open this file - 6. For the <root account> user, ensure the mfa active field is set to TRUE. #### From Command Line: 1. Run the following command: aws iam get-account-summary | grep "AccountMFAEnabled" Ensure the AccountMFAEnabled property is set to 1 ### Remediation: Perform the following to establish MFA for the 'root' user account: 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/. Note: to manage MFA devices for the 'root' AWS account, you must use your 'root' account credentials to sign in to AWS. You cannot manage MFA devices for the 'root' account using other credentials. - 2. Choose Dashboard, and under Security Status, expand Activate MFA on your root account. - 3. Choose Activate MFA - 4. In the wizard, choose A virtual MFA device and then choose Next Step. - IAM generates and displays configuration information for the virtual MFA device, including a QR code graphic. The graphic is a representation of the 'secret configuration key' that is available for manual entry on devices that do not support QR codes. - 6. Open your virtual MFA application. (For a list of apps that you can use for hosting virtual MFA devices, see <u>Virtual MFA Applications</u>.) If the virtual MFA application supports multiple accounts (multiple virtual MFA devices), choose the option to create a new account (a new virtual MFA device). - 7. Determine whether the MFA app supports QR codes, and then do one of the following: - Use the app to scan the QR code. For example, you might choose the camera icon or choose an option similar to Scan code, and then use the device's camera to scan the code. - In the Manage MFA Device wizard, choose Show secret key for manual configuration, and then type the secret configuration key into your MFA application. When you are finished, the virtual MFA device starts generating one-time passwords. In the Manage MFA Device wizard, in the Authentication Code 1 box, type the one-time password that currently appears in the virtual MFA device. Wait up to 30 seconds for the device to generate a new one-time password. Then type the second one-time password into the Authentication Code 2 box. Choose Assign Virtual MFA. #### References: - 1. CCE-78911-5 - 2. <a href="https://docs.aws.amazon.com/IAM/latest/UserGuide/id root-user.html#id ro - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials mfa enable-virtual.html#enable-virt-mfa-for-root # **Additional Information:** IAM User account "root" for us-gov cloud regions does not have console access. This recommendation is not applicable for us-gov cloud regions. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 6.5 Require MFA for Administrative Access Require MFA for all administrative access accounts, where supported, on all enterprise assets, whether managed on-site or through a third-party provider. | • | • | • | | v7 | 4.5 <u>Use Multifactor Authentication For All Administrative Access</u> Use multi-factor authentication and encrypted channels for all administrative account access. | | • | • | # 1.6 Ensure hardware MFA is enabled for the 'root' user account (Automated) # **Profile Applicability:** Level 2 #### **Description:** The 'root' user account is the most privileged user in an AWS account. MFA adds an extra layer of protection on top of a user name and password. With MFA enabled, when a user signs in to an AWS website, they will be prompted for their user name and password as well as for an authentication code from their AWS MFA device. For Level 2, it is recommended that the 'root' user account be protected with a hardware MFA. #### Rationale: A hardware MFA has a smaller attack surface than a virtual MFA. For example, a hardware MFA does not suffer the attack surface introduced by the mobile smartphone on which a virtual MFA resides. **Note**: Using hardware MFA for many, many AWS accounts may create a logistical device management issue. If this is the case, consider implementing this Level 2 recommendation selectively to the highest security AWS accounts and the Level 1 recommendation applied to the remaining accounts. #### Audit: Perform the following to determine if the 'root' user account has a hardware MFA setup: 1. Run the following command to determine if the 'root' account has MFA setup: ``` aws iam get-account-summary | grep "AccountMFAEnabled" ``` The AccountMFAEnabled property is set to 1 will ensure that the 'root' user account has MFA (Virtual or Hardware) Enabled. If AccountMFAEnabled property is set to 0 the account is not compliant with this recommendation. 2. If AccountMFAEnabled property is set to 1, determine 'root' account has Hardware MFA enabled. Run the following command to list all virtual MFA devices: ``` aws iam list-virtual-mfa-devices ``` If the output contains one MFA with the following Serial Number, it means the MFA is virtual, not hardware and the account is not compliant with this recommendation: "SerialNumber": "arn:aws:iam::_<aws_account_number>_:mfa/root-account_mfa-device" #### Remediation: Perform the following to establish a hardware MFA for the 'root' user account: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/. - Note: to manage MFA devices for the AWS 'root' user account, you must use your 'root' account credentials to sign in to AWS. You cannot manage MFA devices for the 'root' account using other credentials. - 2. Choose Dashboard, and under Security Status, expand Activate MFA on your root account. - 3. Choose Activate MFA - 4. In the wizard, choose A hardware MFA device and then choose Next Step. - 5. In the Serial Number box, enter the serial number that is found on the back of the MFA device. - 6. In the Authentication Code 1 box, enter the six-digit number displayed by the MFA device. You might need to press the button on the front of the device to display the number. - 7. Wait 30 seconds while the device refreshes the code, and then enter the next six-digit number into the Authentication Code 2 box. You might need to press the button on the front of the device again to display the second number. - 8. Choose Next Step. The MFA device is now associated with the AWS account. The next time you use your AWS account credentials to sign in, you must type
a code from the hardware MFA device. Remediation for this recommendation is not available through AWS CLI. #### References: - 1. CCE-78911-5 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials mfa enable virtual.html - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials mfa enable-physical.html#enable-hw-mfa-for-root #### **Additional Information:** IAM User account 'root' for us-gov cloud regions does not have console access. This control is not applicable for us-gov cloud regions. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 6.5 Require MFA for Administrative Access Require MFA for all administrative access accounts, where supported, on all enterprise assets, whether managed on-site or through a third-party provider. | • | • | • | | v7 | 4.5 <u>Use Multifactor Authentication For All Administrative Access</u> Use multi-factor authentication and encrypted channels for all administrative account access. | | • | • | # 1.7 Eliminate use of the 'root' user for administrative and daily tasks (Automated) # **Profile Applicability:** Level 1 #### **Description:** With the creation of an AWS account, a 'root user' is created that cannot be disabled or deleted. That user has unrestricted access to and control over all resources in the AWS account. It is highly recommended that the use of this account be avoided for everyday tasks. #### Rationale: The 'root user' has unrestricted access to and control over all account resources. Use of it is inconsistent with the principles of least privilege and separation of duties, and can lead to unnecessary harm due to error or account compromise. #### Audit: #### From Console: - 1. Login to the AWS Management Console at https://console.aws.amazon.com/iam/ - 2. In the left pane, click Credential Report - 3. Click on Download Report - 4. Open of Save the file locally - 5. Locate the <root account> under the user column - 6. Review password_last_used, access_key_1_last_used_date, access_key_2_last_used_date to determine when the 'root user' was last used. #### From Command Line: Run the following CLI commands to provide a credential report for determining the last time the 'root user' was used: ``` aws iam generate-credential-report aws iam get-credential-report --query 'Content' --output text | base64 -d | cut -d, -f1,5,11,16 | grep -B1 '<root_account>' ``` ``` Review password_last_used, access_key_1_last_used_date, access key 2 last used date to determine when the root user was last used. ``` **Note:** There are a few conditions under which the use of the 'root' user account is required. Please see the reference links for all of the tasks that require use of the 'root' user. #### Remediation: If you find that the 'root' user account is being used for daily activity to include administrative tasks that do not require the 'root' user: - 1. Change the 'root' user password. - 2. Deactivate or delete any access keys associate with the 'root' user. #### References: - 1. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/id root-user.html - 3. https://docs.aws.amazon.com/general/latest/gr/aws-tasks-that-require-root.html #### **Additional Information:** The 'root' user for us-gov cloud regions is not enabled by default. However, on request to AWS support, they can enable the 'root' user and grant access only through access-keys (CLI, API methods) for us-gov cloud region. If the 'root' user for us-gov cloud regions is enabled, this recommendation is applicable. Monitoring usage of the 'root' user can be accomplished by implementing recommendation 3.3 Ensure a log metric filter and alarm exist for usage of the 'root' user. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 5.4 Restrict Administrator Privileges to Dedicated Administrator Accounts Restrict administrator privileges to dedicated administrator accounts on enterprise assets. Conduct general computing activities, such as internet browsing, email, and productivity suite use, from the user's primary, non-privileged account. | • | • | • | | v7 | 4.3 Ensure the Use of Dedicated Administrative Accounts Ensure that all users with administrative account access use a dedicated or secondary account for elevated activities. This account should only be used for administrative activities and not internet browsing, email, or similar activities. | • | • | • | ^{**}Remember, anyone who has 'root' user credentials for your AWS account has unrestricted access to and control of all the resources in your account, including billing information. # 1.8 Ensure IAM password policy requires minimum length of 14 or greater (Automated) # **Profile Applicability:** Level 1 ### **Description:** Password policies are, in part, used to enforce password complexity requirements. IAM password policies can be used to ensure password are at least a given length. It is recommended that the password policy require a minimum password length 14. #### Rationale: Setting a password complexity policy increases account resiliency against brute force login attempts. #### Audit: Perform the following to ensure the password policy is configured as prescribed: #### From Console: - 1. Login to AWS Console (with appropriate permissions to View Identity Access Management Account Settings) - 2. Go to IAM Service on the AWS Console - 3. Click on Account Settings on the Left Pane - 4. Ensure "Minimum password length" is set to 14 or greater. #### From Command Line: aws iam get-account-password-policy Ensure the output of the above command includes "MinimumPasswordLength": 14 (or higher) #### Remediation: Perform the following to set the password policy as prescribed: #### From Console: - 1. Login to AWS Console (with appropriate permissions to View Identity Access Management Account Settings) - 2. Go to IAM Service on the AWS Console - 3. Click on Account Settings on the Left Pane - 4. Set "Minimum password length" to 14 or greater. - 5. Click "Apply password policy" #### From Command Line: aws iam update-account-password-policy --minimum-password-length 14 Note: All commands starting with "aws iam update-account-password-policy" can be combined into a single command. ### References: - 1. CCE-78907-3 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials passwords a count-policy.html - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#configure-strong-password-policy | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 5 <u>Account Management</u> Use processes and tools to assign and manage authorization to credentials for user accounts, including administrator accounts, as well as service accounts, to enterprise assets and software. | | | | | v8 | 5.2 <u>Use Unique Passwords</u> Use unique passwords for all enterprise assets. Best practice implementation includes, at a minimum, an 8-character password for accounts using MFA and a 14-character password for accounts not using MFA. | • | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 1.9 Ensure IAM password policy prevents password reuse (Automated) # **Profile Applicability:** Level 1 ### **Description:** IAM password policies can prevent the reuse of a given password by the same user. It is recommended that the password policy prevent the reuse of passwords. #### Rationale: Preventing password reuse increases account resiliency against brute force login attempts. #### Audit: Perform the following to ensure the password policy is configured as prescribed: #### From Console: - 1. Login to AWS Console (with appropriate permissions to View Identity Access Management Account Settings) - 2. Go to IAM Service on the AWS Console - 3. Click on Account Settings on the Left Pane - 4. Ensure "Prevent password reuse" is checked - 5. Ensure "Number of passwords to remember" is set to 24 #### From Command Line: aws iam get-account-password-policy Ensure the output of the above command includes "PasswordReusePrevention": 24 #### Remediation: Perform the following to set the password policy as prescribed: #### From Console: - 1. Login to AWS Console (with appropriate permissions to View Identity Access Management Account Settings) - 2. Go to IAM Service on the AWS Console - 3. Click on Account Settings on the Left Pane - 4. Check "Prevent password reuse" - 5. Set "Number of passwords to remember" is set to 24
From Command Line: aws iam update-account-password-policy --password-reuse-prevention 24 Note: All commands starting with "aws iam update-account-password-policy" can be combined into a single command. ### References: - 1. CCE-78908-1 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials passwords a count-policy.html - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#configure-strong-password-policy | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 5.2 <u>Use Unique Passwords</u> Use unique passwords for all enterprise assets. Best practice implementation includes, at a minimum, an 8-character password for accounts using MFA and a 14-character password for accounts not using MFA. | • | • | • | | v7 | 4.4 <u>Use Unique Passwords</u> Where multi-factor authentication is not supported (such as local administrator, root, or service accounts), accounts will use passwords that are unique to that system. | | • | • | # 1.10 Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password (Automated) # **Profile Applicability:** Level 1 # **Description:** Multi-Factor Authentication (MFA) adds an extra layer of authentication assurance beyond traditional credentials. With MFA enabled, when a user signs in to the AWS Console, they will be prompted for their user name and password as well as for an authentication code from their physical or virtual MFA token. It is recommended that MFA be enabled for all accounts that have a console password. #### Rationale: Enabling MFA provides increased security for console access as it requires the authenticating principal to possess a device that displays a time-sensitive key and have knowledge of a credential. ### Impact: AWS will soon end support for SMS multi-factor authentication (MFA). New customers are not allowed to use this feature. We recommend that existing customers switch to one of the following alternative methods of MFA. #### Audit: Perform the following to determine if a MFA device is enabled for all IAM users having a console password: #### From Console: - 1. Open the IAM console at https://console.aws.amazon.com/iam/. - 2. In the left pane, select Users - 3. If the MFA or Password age columns are not visible in the table, click the gear icon at the upper right corner of the table and ensure a checkmark is next to both, then click close. - 4. Ensure that for each user where the Password age column shows a password age, the MFA column shows Virtual, U2F Security Key, Or Hardware. #### From Command Line: 1. Run the following command (OSX/Linux/UNIX) to generate a list of all IAM users along with their password and MFA status: ``` aws iam generate-credential-report aws iam get-credential-report --query 'Content' --output text | base64 -d | cut -d, -f1,4,8 ``` 2. The output of this command will produce a table similar to the following: ``` user, password_enabled, mfa_active elise, false, false brandon, true, true rakesh, false, false helene, false, false paras, true, true anitha, false, false ``` 3. For any column having password_enabled set to true, ensure mfa_active is also set to true. #### Remediation: Perform the following to enable MFA: #### From Console: - 1. Sign in to the AWS Management Console and open the IAM console at 'https://console.aws.amazon.com/iam/' - 2. In the left pane, select Users. - 3. In the User Name list, choose the name of the intended MFA user. - 4. Choose the Security Credentials tab. and then choose Manage MFA Device. - 5. In the Manage MFA Device wizard, choose Virtual MFA device, and then choose Continue. IAM generates and displays configuration information for the virtual MFA device, including a QR code graphic. The graphic is a representation of the 'secret configuration key' that is available for manual entry on devices that do not support QR codes. - 6. Open your virtual MFA application. (For a list of apps that you can use for hosting virtual MFA devices, see Virtual MFA Applications at https://aws.amazon.com/iam/details/mfa/#Virtual MFA Applications). If the virtual MFA application supports multiple accounts (multiple virtual MFA devices), choose the option to create a new account (a new virtual MFA device). - 7. Determine whether the MFA app supports QR codes, and then do one of the following: - Use the app to scan the QR code. For example, you might choose the camera icon or choose an option similar to Scan code, and then use the device's camera to scan the code. - In the Manage MFA Device wizard, choose Show secret key for manual configuration, and then type the secret configuration key into your MFA application. When you are finished, the virtual MFA device starts generating one-time passwords. - 8. In the Manage MFA Device wizard, in the MFA Code 1 box, type the one-time password that currently appears in the virtual MFA device. Wait up to 30 seconds for the device to generate a new one-time password. Then type the second one-time password into the MFA Code 2 box. - 9. Click Assign MFA. #### References: - 1. https://tools.ietf.org/html/rfc6238 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials mfa.html - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#enable-mfa-for-privileged-users - 4. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials mfa enable virtual.html - 5. CCE-78901-6 - 6. https://blogs.aws.amazon.com/security/post/Tx2SJJYE082KBUK/How-to-Delegate-Management-of-Multi-Factor-Authentication-to-AWS-IAM-Users #### Additional Information: #### Forced IAM User Self-Service Remediation Amazon has published a pattern that forces users to self-service setup MFA before they have access to their complete permissions set. Until they complete this step, they cannot access their full permissions. This pattern can be used on new AWS accounts. It can also be used on existing accounts - it is recommended users are given instructions and a grace period to accomplish MFA enrollment before active enforcement on existing AWS accounts. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 6.5 Require MFA for Administrative Access Require MFA for all administrative access accounts, where supported, on all enterprise assets, whether managed on-site or through a third-party provider. | • | • | • | | v7 | 4.5 <u>Use Multifactor Authentication For All Administrative Access</u> Use multi-factor authentication and encrypted channels for all administrative account access. | | • | • | # 1.11 Do not setup access keys during initial user setup for all IAM users that have a console password (Automated) ## **Profile Applicability:** Level 1 ## **Description:** AWS console defaults to no check boxes selected when creating a new IAM user. When cerating the IAM User credentials you have to determine what type of access they require. Programmatic access: The IAM user might need to make API calls, use the AWS CLI, or use the Tools for Windows PowerShell. In that case, create an access key (access key ID and a secret access key) for that user. AWS Management Console access: If the user needs to access the AWS Management Console, create a password for the user. #### Rationale: Requiring the additional steps be taken by the user for programmatic access after their profile has been created will give a stronger indication of intent that access keys are [a] necessary for their work and [b] once the access key is established on an account that the keys may be in use somewhere in the organization. **Note**: Even if it is known the user will need access keys, require them to create the keys themselves or put in a support ticket to have them created as a separate step from user creation. #### Audit: Perform the following to determine if access keys were created upon user creation and are being used and rotated as prescribed: #### From Console: - 1. Login to the AWS Management Console - 2. Click Services - 3. Click IAM - 4. Click on a User where column Password age and Access key age is not set to - 5. Click on Security credentials Tab - 6. Compare the user 'Creation time to the Access Key Created' date. - 7. For any that match, the key was created during initial user setup. - Keys that were created at the same time as the user profile and do not have a last used date should be deleted. Refer to the remediation below. #### From Command Line: 1. Run the following command (OSX/Linux/UNIX) to generate a list of all IAM users along with their access keys utilization: ``` aws iam generate-credential-report aws iam get-credential-report --query 'Content' --output text | base64 -d | cut -d, -f1,4,9,11,14,16 ``` 2. The output of this command will produce a table similar to the following: ```
user,password_enabled,access_key_1_active,access_key_1_last_used_date,access_key_2_active,access_key_2_last_used_date elise,false,true,2015-04-16T15:14:00+00:00,false,N/A brandon,true,true,N/A,false,N/A rakesh,false,false,N/A,false,N/A helene,false,true,2015-11-18T17:47:00+00:00,false,N/A paras,true,true,2016-08-28T12:04:00+00:00,true,2016-03-04T10:11:00+00:00 anitha,true,true,2016-06-08T11:43:00+00:00,true,N/A ``` 3. For any user having password_enabled set to true AND access key last used date set to N/A refer to the remediation below. #### Remediation: Perform the following to delete access keys that do not pass the audit: #### From Console: - 1. Login to the AWS Management Console: - 2. Click Services - 3. Click IAM - 4. Click on Users - 5. Click on Security Credentials - 6. As an Administrator - Click on the X (Delete) for keys that were created at the same time as the user profile but have not been used. - 7. As an IAM User - Click on the X (Delete) for keys that were created at the same time as the user profile but have not been used. #### From Command Line: ``` aws iam delete-access-key --access-key-id <access-key-id-listed> --user-name <users-name> ``` ## References: - https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html ## **Additional Information:** Credential report does not appear to contain "Key Creation Date" | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v8 | 5.4 Restrict Administrator Privileges to Dedicated Administrator Accounts Restrict administrator privileges to dedicated administrator accounts on enterprise assets. Conduct general computing activities, such as internet browsing, email, and productivity suite use, from the user's primary, non-privileged account. | • | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 1.12 Ensure credentials unused for 45 days or greater are disabled (Automated) ## **Profile Applicability:** Level 1 ## **Description:** AWS IAM users can access AWS resources using different types of credentials, such as passwords or access keys. It is recommended that all credentials that have been unused in 45 or greater days be deactivated or removed. #### Rationale: Disabling or removing unnecessary credentials will reduce the window of opportunity for credentials associated with a compromised or abandoned account to be used. #### Audit: Perform the following to determine if unused credentials exist: #### From Console: - 1. Login to the AWS Management Console - 2. Click Services - 3. Click IAM - 4. Click on Users - 5. Click the Settings (gear) icon. - 6. Select Console last sign-in, Access key last used, and Access Key Id - 7. Click on Close - 8. Check and ensure that Console last sign-in is less than 45 days ago. Note - Never means the user has never logged in. 9. Check and ensure that Access key age is less than 45 days and that Access key last used does not say None If the user hasn't signed into the Console in the last 45 days or Access keys are over 45 days old refer to the remediation. ## From Command Line: Download Credential Report: 1. Run the following commands: ``` aws iam generate-credential-report aws iam get-credential-report --query 'Content' --output text | base64 -d | cut -d, -f1,4,5,6,9,10,11,14,15,16 | grep -v '^<root_account>' ``` #### Ensure unused credentials do not exist: - 2. For each user having password_enabled set to TRUE, ensure password_last_used_date is less than 45 days ago. - When password_enabled is set to TRUE and password_last_used is set to No Information, ensure password last changed is less than 45 days ago. - 3. For each user having an access_key_1_active or access_key_2_active to TRUE, ensure the corresponding access_key_n_last_used_date is less than 45 days ago. - When a user having an access_key_x_active (where x is 1 or 2) to TRUE and corresponding access_key_x_last_used_date is set to N/A', ensure access_key_x_last_rotated` is less than 45 days ago. #### Remediation: #### From Console: Perform the following to manage Unused Password (IAM user console access) - 1. Login to the AWS Management Console: - 2. Click Services - 3. Click IAM - 4. Click on Users - 5. Click on Security Credentials - 6. Select user whose Console last sign-in is greater than 45 days - 7. Click Security credentials - 8. In section Sign-in credentials, Console password click Manage - 9. Under Console Access select Disable 10.Click Apply #### Perform the following to deactivate Access Keys: - 1. Login to the AWS Management Console: - 2. Click Services - 3. Click IAM - 4. Click on Users - 5. Click on Security Credentials - 6. Select any access keys that are over 45 days old and that have been used and - Click on Make Inactive - 7. Select any access keys that are over 45 days old and that have not been used and - Click the X to Delete #### References: - 1. CCE-78900-8 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#remove-credentials - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials finding-unused.html - 4. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials passwords a dmin-change-user.html - 5. https://docs.aws.amazon.com/IAM/latest/UserGuide/id-credentials-access-keys.html #### **Additional Information:** <root_account> is excluded in the audit since the root account should not be used for day to day business and would likely be unused for more than 45 days. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 5.3 <u>Disable Dormant Accounts</u> Delete or disable any dormant accounts after a period of 45 days of inactivity, where supported. | • | • | • | | v7 | 16.9 <u>Disable Dormant Accounts</u> Automatically disable dormant accounts after a set period of inactivity. | • | • | • | ## 1.13 Ensure there is only one active access key available for any single IAM user (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Access keys are long-term credentials for an IAM user or the AWS account 'root' user. You can use access keys to sign programmatic requests to the AWS CLI or AWS API (directly or using the AWS SDK) #### Rationale: Access keys are long-term credentials for an IAM user or the AWS account 'root' user. You can use access keys to sign programmatic requests to the AWS CLI or AWS API. One of the best ways to protect your account is to not allow users to have multiple access keys. #### Audit: #### From Console: - 1. Sign in to the AWS Management Console and navigate to IAM dashboard at https://console.aws.amazon.com/iam/. - 2. In the left navigation panel, choose Users. - 3. Click on the IAM user name that you want to examine. - 4. On the IAM user configuration page, select Security Credentials tab. - 5. Under Access Keys section, in the Status column, check the current status for each access key associated with the IAM user. If the selected IAM user has more than one access key activated then the users access configuration does not adhere to security best practices and the risk of accidental exposures increases. - Repeat steps no. 3 5 for each IAM user in your AWS account. #### From Command Line: 1. Run list-users command to list all IAM users within your account: ``` aws iam list-users --query "Users[*].UserName" ``` The command output should return an array that contains all your IAM user names. 2. Run list-access-keys command using the IAM user name list to return the current status of each access key associated with the selected IAM user: aws iam list-access-keys --user-name <user-name> The command output should expose the metadata ("Username", "AccessKeyId", "Status", "CreateDate") for each access key on that user account. - 3. Check the Status property value for each key returned to determine each keys current state. If the Status property value for more than one IAM access key is set to Active, the user access configuration does not adhere to this recommendation, refer to the remediation below. - Repeat steps no. 2 and 3 for each IAM user in your AWS account. #### Remediation: #### From Console: - 1. Sign in to the AWS Management Console and navigate to IAM dashboard at https://console.aws.amazon.com/iam/. - 2. In the left navigation panel, choose Users. - 3. Click on the IAM user name that you want to examine. - 4. On the IAM user configuration page, select Security Credentials tab. - 5. In Access Keys section, choose one access key that is less than 90 days old. This should be the only active key used by this IAM user to access AWS resources programmatically. Test your application(s) to make sure that the chosen access key is working. - 6. In the same Access Keys section, identify your non-operational access keys (other than the chosen one) and deactivate it by clicking the Make Inactive link. - 7. If you receive the Change Key Status
confirmation box, click Deactivate to switch off the selected key. - 8. Repeat steps no. 3-7 for each IAM user in your AWS account. #### From Command Line: - 1. Using the IAM user and access key information provided in the Audit CLI, choose one access key that is less than 90 days old. This should be the only active key used by this IAM user to access AWS resources programmatically. Test your application(s) to make sure that the chosen access key is working. - 2. Run the update-access-key command below using the IAM user name and the non-operational access key IDs to deactivate the unnecessary key(s). Refer to the Audit section to identify the unnecessary access key ID for the selected IAM user ## **Note** - the command does not return any output: aws iam update-access-key --access-key-id <access-key-id> --status Inactive -user-name <user-name> 3. To confirm that the selected access key pair has been successfully deactivated run the list-access-keys audit command again for that IAM User: aws iam list-access-keys --user-name <user-name> - The command output should expose the metadata for each access key associated with the IAM user. If the non-operational key pair(s) Status is set to Inactive, the key has been successfully deactivated and the IAM user access configuration adheres now to this recommendation. - 4. Repeat steps no. 1 3 for each IAM user in your AWS account. #### References: - 1. https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials access-keys.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 5 Account Management Use processes and tools to assign and manage authorization to credentials for user accounts, including administrator accounts, as well as service accounts, to enterprise assets and software. | | | | | v7 | 4 Controlled Use of Administrative Privileges Controlled Use of Administrative Privileges | | | | ## 1.14 Ensure access keys are rotated every 90 days or less (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Access keys consist of an access key ID and secret access key, which are used to sign programmatic requests that you make to AWS. AWS users need their own access keys to make programmatic calls to AWS from the AWS Command Line Interface (AWS CLI), Tools for Windows PowerShell, the AWS SDKs, or direct HTTP calls using the APIs for individual AWS services. It is recommended that all access keys be regularly rotated. #### Rationale: Rotating access keys will reduce the window of opportunity for an access key that is associated with a compromised or terminated account to be used. Access keys should be rotated to ensure that data cannot be accessed with an old key which might have been lost, cracked, or stolen. #### Audit: Perform the following to determine if access keys are rotated as prescribed: #### From Console: - 1. Go to Management Console (https://console.aws.amazon.com/iam) - 2. Click on Users - 3. Click setting icon - 4. Select "Console last sign-in" - 5. Click Close - 6. Ensure that "Access key age" is less than 90 days ago. note) "None" in the "Access key age" means the user has not used the access key. #### From Command Line: ``` aws iam generate-credential-report aws iam get-credential-report --query 'Content' --output text | base64 -d ``` The access_key_1_last_rotated field in this file notes The date and time, in ISO 8601 date-time format, when the user's access key was created or last changed. If the user does not have an active access key, the value in this field is N/A (not applicable). #### Remediation: Perform the following to rotate access keys: #### From Console: - 1. Go to Management Console (https://console.aws.amazon.com/iam) - 2. Click on Users - 3. Click on Security Credentials - 4. As an Administrator - o Click on Make Inactive for keys that have not been rotated in 90 Days - 5. As an IAM User - Click on Make Inactive or Delete for keys which have not been rotated or used in 90 Days - 6. Click on "Create Access Key - 7. Update programmatic call with new Access Key credentials #### From Command Line: 1. While the first access key is still active, create a second access key, which is active by default. Run the following command: aws iam create-access-key At this point, the user has two active access keys. - 2. Update all applications and tools to use the new access key. - 3. Determine whether the first access key is still in use by using this command: aws iam get-access-key-last-used 4. One approach is to wait several days and then check the old access key for any use before proceeding. Even if step Step 3 indicates no use of the old key, it is recommended that you do not immediately delete the first access key. Instead, change the state of the first access key to Inactive using this command: aws iam update-access-key - 5. Use only the new access key to confirm that your applications are working. Any applications and tools that still use the original access key will stop working at this point because they no longer have access to AWS resources. If you find such an application or tool, you can switch its state back to Active to reenable the first access key. Then return to step Step 2 and update this application to use the new key. - 6. After you wait some period of time to ensure that all applications and tools have been updated, you can delete the first access key with this command: aws iam delete-access-key ### References: - 1. CCE-78902-4 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials - 3. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials finding-unused.html - 4. https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html - 5. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials access-keys.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 5 <u>Account Management</u> Use processes and tools to assign and manage authorization to credentials for user accounts, including administrator accounts, as well as service accounts, to enterprise assets and software. | | | | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | ## 1.15 Ensure IAM Users Receive Permissions Only Through Groups (Automated) ## **Profile Applicability:** Level 1 ## **Description:** IAM users are granted access to services, functions, and data through IAM policies. There are three ways to define policies for a user: 1) Edit the user policy directly, aka an inline, or user, policy; 2) attach a policy directly to a user; 3) add the user to an IAM group that has an attached policy. Only the third implementation is recommended. #### Rationale: Assigning IAM policy only through groups unifies permissions management to a single, flexible layer consistent with organizational functional roles. By unifying permissions management, the likelihood of excessive permissions is reduced. #### Audit: Perform the following to determine if an inline policy is set or a policy is directly attached to users: 1. Run the following to get a list of IAM users: ``` aws iam list-users --query 'Users[*].UserName' --output text ``` 2. For each user returned, run the following command to determine if any policies are attached to them: ``` aws iam list-attached-user-policies --user-name <iam_user> aws iam list-user-policies --user-name <iam_user> ``` 3. If any policies are returned, the user has an inline policy or direct policy attachment. #### Remediation: Perform the following to create an IAM group and assign a policy to it: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/. - 2. In the navigation pane, click Groups and then click Create New Group. - 3. In the Group Name box, type the name of the group and then click Next Step. - 4. In the list of policies, select the check box for each policy that you want to apply to all members of the group. Then click Next Step. - 5. Click Create Group ### Perform the following to add a user to a given group: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/. - 2. In the navigation pane, click Groups - 3. Select the group to add a user to - 4. Click Add Users To Group - 5. Select the users to be added to the group - 6. Click Add Users Perform the following to remove a direct association between a user and policy: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/. - 2. In the left navigation pane, click on Users - 3. For each user: - Select the user - o Click on the Permissions tab - o **Expand** Permissions policies - Click x for each policy; then click Detach or Remove (depending on policy type) ## References: - 1. http://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html - 2. <a href="http://docs.aws.amazon.com/IAM/latest/UserGuide/access policies
managed-vs-inline.html">http://docs.aws.amazon.com/IAM/latest/UserGuide/access policies managed-vs-inline.html - 3. CCE-78912-3 | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 6.8 <u>Define and Maintain Role-Based Access Control</u> Define and maintain role-based access control, through determining and documenting the access rights necessary for each role within the enterprise to successfully carry out its assigned duties. Perform access control reviews of enterprise assets to validate that all privileges are authorized, on a recurring schedule at a minimum annually, or more frequently. | | | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 1.16 Ensure IAM policies that allow full "*:*" administrative privileges are not attached (Automated) ## **Profile Applicability:** Level 1 ## **Description:** IAM policies are the means by which privileges are granted to users, groups, or roles. It is recommended and considered a standard security advice to grant *least privilege* -that is, granting only the permissions required to perform a task. Determine what users need to do and then craft policies for them that let the users perform *only* those tasks, instead of allowing full administrative privileges. #### **Rationale:** It's more secure to start with a minimum set of permissions and grant additional permissions as necessary, rather than starting with permissions that are too lenient and then trying to tighten them later. Providing full administrative privileges instead of restricting to the minimum set of permissions that the user is required to do exposes the resources to potentially unwanted actions. IAM policies that have a statement with "Effect": "Allow" with "Action": "*" over "Resource": "*" should be removed. #### Audit: Perform the following to determine what policies are created: #### From Command Line: 1. Run the following to get a list of IAM policies: ``` aws iam list-policies --only-attached --output text ``` For each policy returned, run the following command to determine if any policies is allowing full administrative privileges on the account: ``` aws iam get-policy-version --policy-arn <policy_arn> --version-id <version> ``` 3. In output ensure policy should not have any Statement block with "Effect": "Allow" and Action set to "*" and Resource set to "*" #### Remediation: #### From Console: Perform the following to detach the policy that has full administrative privileges: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/. - 2. In the navigation pane, click Policies and then search for the policy name found in the audit step. - 3. Select the policy that needs to be deleted. - 4. In the policy action menu, select first Detach - 5. Select all Users, Groups, Roles that have this policy attached - 6. Click Detach Policy - 7. In the policy action menu, select Detach ### From Command Line: Perform the following to detach the policy that has full administrative privileges as found in the audit step: 1. Lists all IAM users, groups, and roles that the specified managed policy is attached to. ``` aws iam list-entities-for-policy --policy-arn <policy arn> ``` 2. Detach the policy from all IAM Users: ``` aws iam detach-user-policy --user-name <iam user> --policy-arn <policy arn> ``` Detach the policy from all IAM Groups: ``` aws iam detach-group-policy --group-name <iam_group> --policy-arn <policy_arn> ``` 4. Detach the policy from all IAM Roles: ``` aws iam detach-role-policy --role-name <iam role> --policy-arn <policy arn> ``` #### References: - 1. https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/access-policies-managed-vs-inline.html - 3. CCE-78912-3 - 4. https://docs.aws.amazon.com/cli/latest/reference/iam/index.html#cli-aws-iam | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 4 Controlled Use of Administrative Privileges Controlled Use of Administrative Privileges | | | | # 1.17 Ensure a support role has been created to manage incidents with AWS Support (Automated) ## **Profile Applicability:** Level 1 ## **Description:** AWS provides a support center that can be used for incident notification and response, as well as technical support and customer services. Create an IAM Role to allow authorized users to manage incidents with AWS Support. #### Rationale: By implementing least privilege for access control, an IAM Role will require an appropriate IAM Policy to allow Support Center Access in order to manage Incidents with AWS Support. ## Impact: All AWS Support plans include an unlimited number of account and billing support cases, with no long-term contracts. Support billing calculations are performed on a peraccount basis for all plans. Enterprise Support plan customers have the option to include multiple enabled accounts in an aggregated monthly billing calculation. Monthly charges for the Business and Enterprise support plans are based on each month's AWS usage charges, subject to a monthly minimum, billed in advance. #### Audit: #### From Command Line: 1. List IAM policies, filter for the 'AWSSupportAccess' managed policy, and note the "Arn" element value: ``` aws iam list-policies --query "Policies[?PolicyName == 'AWSSupportAccess']" ``` 2. Check if the 'AWSSupportAccess' policy is attached to any role: ``` aws iam list-entities-for-policy --policy-arn arn:aws:iam::aws:policy/AWSSupportAccess ``` 3. In Output, Ensure PolicyRoles does not return empty. 'Example: Example: PolicyRoles: []' If it returns empty refer to the remediation below. #### Remediation: #### From Command Line: - 1. Create an IAM role for managing incidents with AWS: - Create a trust relationship policy document that allows <iam_user> to manage AWS incidents, and save it locally as /tmp/TrustPolicy.json: 2. Create the IAM role using the above trust policy: ``` aws iam create-role --role-name <aws_support_iam_role> --assume-role-policy- document file:///tmp/TrustPolicy.json ``` 3. Attach 'AWSSupportAccess' managed policy to the created IAM role: ``` aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/AWSSupportAccess --role-name <aws support iam role> ``` #### References: - 1. https://docs.aws.amazon.com/IAM/latest/UserGuide/access-policies-managed-vs-inline.html - 2. https://aws.amazon.com/premiumsupport/pricing/ - 3. https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html - 4. https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html - 5. https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html #### **Additional Information:** AWSSupportAccess policy is a global AWS resource. It has same ARN as arn:aws:iam::aws:policy/AWSSupportAccess for every account. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 17.1 <u>Designate Personnel to Manage Incident Handling</u> Designate one key person, and at least one backup, who will manage the enterprise's incident handling process. Management personnel are responsible for the coordination and documentation of incident response and recovery efforts and can consist of employees internal to the enterprise, third-party vendors, or a hybrid approach. If using a third-party vendor, designate at least one person internal to the enterprise to oversee any third-party work. Review annually, or when significant enterprise changes occur that could impact this Safeguard. | • | • | • | | v7 | 14 Controlled Access Based on the Need to Know Controlled Access Based on the Need to Know | | | | ## 1.18 Ensure IAM instance roles are used for AWS resource access from instances (Manual) ## **Profile Applicability:** Level 2 ## **Description:** AWS access from within AWS instances can be done by either encoding AWS keys into AWS API calls or by assigning the instance to a role which has an appropriate permissions policy for the required access. "AWS Access" means accessing the APIs of AWS in order to access AWS resources or
manage AWS account resources. #### Rationale: AWS IAM roles reduce the risks associated with sharing and rotating credentials that can be used outside of AWS itself. If credentials are compromised, they can be used from outside of the AWS account they give access to. In contrast, in order to leverage role permissions an attacker would need to gain and maintain access to a specific instance to use the privileges associated with it. Additionally, if credentials are encoded into compiled applications or other hard to change mechanisms, then they are even more unlikely to be properly rotated due to service disruption risks. As time goes on, credentials that cannot be rotated are more likely to be known by an increasing number of individuals who no longer work for the organization owning the credentials. #### Audit: Where an instance is associated with a Role: For instances that are known to perform AWS actions, ensure that they belong to an instance role that has the necessary permissions: - Login to AWS Console (with appropriate permissions to View Identity Access Management Account Settings) - 2. Open the EC2 Dashboard and choose "Instances" - 3. Click the EC2 instance that performs AWS actions, in the lower pane details find "IAM Role" - 4. If the Role is blank, the instance is not assigned to one. - 5. If the Role is filled in, it does not mean the instance might not *also* have credentials encoded on it for some activities. Where an Instance Contains Embedded Credentials: On the instance that is known to perform AWS actions, audit all scripts and environment variables to ensure that none of them contain AWS credentials. Where an Instance Application Contains Embedded Credentials: Applications that run on an instance may also have credentials embedded. This is a bad practice, but even worse if the source code is stored in a public code repository such as github. When an application contains credentials can be determined by eliminating all other sources of credentials and if the application can still access AWS resources - it likely contains embedded credentials. Another method is to examine all source code and configuration files of the application. #### Remediation: IAM roles can only be associated at the launch of an instance. To remediate an instance to add it to a role you must create a new instance. If the instance has no external dependencies on its current private ip or public addresses are elastic IPs: - 1. In AWS IAM create a new role. Assign a permissions policy if needed permissions are already known. - 2. In the AWS console launch a new instance with identical settings to the existing instance, and ensure that the newly created role is selected. - 3. Shutdown both the existing instance and the new instance. - 4. Detach disks from both instances. - 5. Attach the existing instance disks to the new instance. - 6. Boot the new instance and you should have the same machine, but with the associated role. **Note:** if your environment has dependencies on a dynamically assigned PRIVATE IP address you can create an AMI from the existing instance, destroy the old one and then when launching from the AMI, manually assign the previous private IP address. **Note: **if your environment has dependencies on a dynamically assigned PUBLIC IP address there is not a way ensure the address is retained and assign an instance role. Dependencies on dynamically assigned public IP addresses are a bad practice and, if possible, you may wish to rebuild the instance with a new elastic IP address and make the investment to remediate affected systems while assigning the system to a role. #### References: - 1. https://docs.aws.amazon.com/IAM/latest/UserGuide/id-roles-use-switch-role-ec2.html - 2. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 6.8 <u>Define and Maintain Role-Based Access Control</u> Define and maintain role-based access control, through determining and documenting the access rights necessary for each role within the enterprise to successfully carry out its assigned duties. Perform access control reviews of enterprise assets to validate that all privileges are authorized, on a recurring schedule at a minimum annually, or more frequently. | | | • | | v7 | 19 Incident Response and Management Incident Response and Management | | | | ## 1.19 Ensure that all the expired SSL/TLS certificates stored in AWS IAM are removed (Automated) ## **Profile Applicability:** Level 1 ## **Description:** To enable HTTPS connections to your website or application in AWS, you need an SSL/TLS server certificate. You can use ACM or IAM to store and deploy server certificates. Use IAM as a certificate manager only when you must support HTTPS connections in a region that is not supported by ACM. IAM securely encrypts your private keys and stores the encrypted version in IAM SSL certificate storage. IAM supports deploying server certificates in all regions, but you must obtain your certificate from an external provider for use with AWS. You cannot upload an ACM certificate to IAM. Additionally, you cannot manage your certificates from the IAM Console. ### Rationale: Removing expired SSL/TLS certificates eliminates the risk that an invalid certificate will be deployed accidentally to a resource such as AWS Elastic Load Balancer (ELB), which can damage the credibility of the application/website behind the ELB. As a best practice, it is recommended to delete expired certificates. ## Impact: Deleting the certificate could have implications for your application if you are using an expired server certificate with Elastic Load Balancing, CloudFront, etc. One has to make configurations at respective services to ensure there is no interruption in application functionality. #### Audit: #### From Console: Getting the certificates expiration information via AWS Management Console is not currently supported. To request information about the SSL/TLS certificates stored in IAM via the AWS API use the Command Line Interface (CLI). #### From Command Line: Run list-server-certificates command to list all the IAM-stored server certificates: aws iam list-server-certificates The command output should return an array that contains all the SSL/TLS certificates currently stored in IAM and their metadata (name, ID, expiration date, etc): Verify the ServerCertificateName and Expiration parameter value (expiration date) for each SSL/TLS certificate returned by the list-server-certificates command and determine if there are any expired server certificates currently stored in AWS IAM. If so, use the AWS API to remove them. If this command returns: This means that there are no expired certificates, It DOES NOT mean that no certificates exist. #### Remediation: #### From Console: Removing expired certificates via AWS Management Console is not currently supported. To delete SSL/TLS certificates stored in IAM via the AWS API use the Command Line Interface (CLI). #### From Command Line: To delete Expired Certificate run following command by replacing <CERTIFICATE NAME> with the name of the certificate to delete: ``` aws iam delete-server-certificate --server-certificate-name <CERTIFICATE_NAME> ``` When the preceding command is successful, it does not return any output. #### **Default Value:** By default, expired certificates won't get deleted. #### References: - https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials servercerts.html - 2. https://docs.aws.amazon.com/cli/latest/reference/iam/delete-server-certificate.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.1 Establish and Maintain a Data Management Process Establish and maintain a data management process. In the process, address data sensitivity, data owner, handling of data, data retention limits, and disposal requirements, based on sensitivity and retention standards for the enterprise. Review and update documentation annually, or when significant enterprise changes occur that could impact this Safeguard. | • | • | • | | v7 | 13 <u>Data Protection</u> Data Protection | | | | # 1.20 Ensure that IAM Access analyzer is enabled for all regions (Automated) ## **Profile Applicability:** Level 1 ### **Description:** Enable IAM Access analyzer for IAM policies about all resources in each region. IAM Access Analyzer is a technology introduced at AWS reinvent 2019. After the Analyzer is enabled in IAM, scan results are displayed on the console showing the accessible resources. Scans show resources that other accounts and federated users can access, such as KMS keys and IAM roles. So the results allow you to determine if an unintended user is allowed, making it easier for administrators to monitor least
privileges access. Access Analyzer analyzes only policies that are applied to resources in the same AWS Region. #### Rationale: AWS IAM Access Analyzer helps you identify the resources in your organization and accounts, such as Amazon S3 buckets or IAM roles, that are shared with an external entity. This lets you identify unintended access to your resources and data. Access Analyzer identifies resources that are shared with external principals by using logic-based reasoning to analyze the resource-based policies in your AWS environment. IAM Access Analyzer continuously monitors all policies for S3 bucket, IAM roles, KMS(Key Management Service) keys, AWS Lambda functions, and Amazon SQS(Simple Queue Service) queues. #### Audit: ## From Console: - 1. Open the IAM console at https://console.aws.amazon.com/iam/ - 2. Choose Access analyzer - 3. Click 'Analyzers' - 4. Ensure that at least one analyzer is present - 5. Ensure that the STATUS is set to Active - 6. Repeat these step for each active region #### From Command Line: 1. Run the following command: aws accessanalyzer list-analyzers | grep status - 2. Ensure that at least one Analyzer the status is set to ACTIVE - 3. Repeat the steps above for each active region. If an Access analyzer is not listed for each region or the status is not set to active refer to the remediation procedure below. #### Remediation: #### From Console: Perform the following to enable IAM Access analyzer for IAM policies: - 1. Open the IAM console at https://console.aws.amazon.com/iam/. - 2. Choose Access analyzer. - 3. Choose Create analyzer. - 4. On the Create analyzer page, confirm that the Region displayed is the Region where you want to enable Access Analyzer. - 5. Enter a name for the analyzer. Optional as it will generate a name for you automatically. - 6. Add any tags that you want to apply to the analyzer. Optional. - 7. Choose Create Analyzer. - 8. Repeat these step for each active region #### From Command Line: Run the following command: aws accessanalyzer create-analyzer --analyzer-name <NAME> --type <ACCOUNT|ORGANIZATION> Repeat this command above for each active region. **Note:** The IAM Access Analyzer is successfully configured only when the account you use has the necessary permissions. #### References: - 1. https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-getting-started.html - 3. https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/get-analyzer.html - 4. https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/create-analyzer.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 14 Controlled Access Based on the Need to Know Controlled Access Based on the Need to Know | | | | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | 1.21 Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments (Manual) ## **Profile Applicability:** Level 2 ## **Description:** In multi-account environments, IAM user centralization facilitates greater user control. User access beyond the initial account is then provided via role assumption. Centralization of users can be accomplished through federation with an external identity provider or through the use of AWS Organizations. #### Rationale: Centralizing IAM user management to a single identity store reduces complexity and thus the likelihood of access management errors. #### Audit: For multi-account AWS environments with an external identity provider... - 1. Determine the master account for identity federation or IAM user management - 2. Login to that account through the AWS Management Console - 3. Click Services - 4. Click IAM - 5. Click Identity providers - 6. Verify the configuration Then..., determine all accounts that should not have local users present. For each account... - 1. Determine all accounts that should not have local users present - 2. Log into the AWS Management Console - 3. Switch role into each identified account - 4. Click Services - 5. Click IAM - 6. Click Users - 7. Confirm that no IAM users representing individuals are present For multi-account AWS environments implementing AWS Organizations without an external identity provider... - 1. Determine all accounts that should not have local users present - 2. Log into the AWS Management Console - 3. Switch role into each identified account - 4. Click Services - 5. Click IAM - 6. Click Users - 7. Confirm that no IAM users representing individuals are present ### Remediation: The remediation procedure will vary based on the individual organization's implementation of identity federation and/or AWS Organizations with the acceptance criteria that no non-service IAM users, and non-root accounts, are present outside the account providing centralized IAM user management. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 5.6 <u>Centralize Account Management</u> Centralize account management through a directory or identity service. | | • | • | | v7 | 16.2 Configure Centralized Point of Authentication Configure access for all accounts through as few centralized points of authentication as possible, including network, security, and cloud systems. | | • | • | ## 2 Storage This section contains recommendations for configuring AWS Storage. ## 2.1 Simple Storage Service (S3) This section contains recommendations for configuring AWS Simple Storage Service (S3) Buckets # 2.1.1 Ensure all S3 buckets employ encryption-at-rest (Automated) ## **Profile Applicability:** Level 2 ## **Description:** Amazon S3 provides a variety of no, or low, cost encryption options to protect data at rest. #### Rationale: Encrypting data at rest reduces the likelihood that it is unintentionally exposed and can nullify the impact of disclosure if the encryption remains unbroken. ## Impact: Amazon S3 buckets with default bucket encryption using SSE-KMS cannot be used as destination buckets for Amazon S3 server access logging. Only SSE-S3 default encryption is supported for server access log destination buckets. #### Audit: #### From Console: - 1. Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Select a Bucket. - 3. Click on 'Properties'. - 4. Verify that Default Encryption is enabled, and displays either AES-256, AWS-KMS, SSE-KMS Or SSE-S3. - 5. Repeat for all the buckets in your AWS account. #### From Command Line: 1. Run command to list buckets aws s3 ls 2. For each bucket, run aws s3api get-bucket-encryption --bucket <bucket name> #### 3. Verify that either ``` "SSEAlgorithm": "AES256" ``` or ``` "SSEAlgorithm": "aws:kms"``` is displayed. ``` #### Remediation: #### From Console: - Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Select a Bucket. - 3. Click on 'Properties'. - 4. Click edit on Default Encryption. - 5. Select either Aes-256, Aws-KMS, SSE-KMS or SSE-S3. - 6. Click Save - 7. Repeat for all the buckets in your AWS account lacking encryption. #### From Command Line: #### Run either or **Note:** the KMSMasterKeyID can be set to the master key of your choosing; aws/s3 is an AWS preconfigured default. #### References: - 1. https://docs.aws.amazon.com/AmazonS3/latest/user-guide/default-bucket-encryption.html - 2. https://docs.aws.amazon.com/AmazonS3/latest/dev/bucket-encryption.html#bucket-encryption-related-resources #### Additional Information: S3 bucket encryption only applies to objects as they are placed in the bucket. Enabling S3 bucket encryption does **not** encrypt objects previously stored within the bucket. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------
---|------|------|------| | v8 | 3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data. | | • | • | | v7 | 14.8 Encrypt Sensitive Information at Rest Encrypt all sensitive information at rest using a tool that requires a secondary authentication mechanism not integrated into the operating system, in order to access the information. | | | • | # 2.1.2 Ensure S3 Bucket Policy is set to deny HTTP requests (Automated) # **Profile Applicability:** Level 2 #### **Description:** At the Amazon S3 bucket level, you can configure permissions through a bucket policy making the objects accessible only through HTTPS. #### Rationale: By default, Amazon S3 allows both HTTP and HTTPS requests. To achieve only allowing access to Amazon S3 objects through HTTPS you also have to explicitly deny access to HTTP requests. Bucket policies that allow HTTPS requests without explicitly denying HTTP requests will not comply with this recommendation. #### Audit: To allow access to HTTPS you can use a condition that checks for the key "aws:SecureTransport: true". This means that the request is sent through HTTPS but that HTTP can still be used. So to make sure you do not allow HTTP access confirm that there is a bucket policy that explicitly denies access for HTTP requests and that it contains the key "aws:SecureTransport": "false". #### From Console: - 1. Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Select the Check box next to the Bucket. - 3. Click on 'Permissions', then Click on Bucket Policy. - 4. Ensure that a policy is listed that matches: ``` "Sid": <optional>, "Effect": "Deny", "Principal": "*", "Action": "s3:*", "Resource": "arn:aws:s3:::<bucket_name>/*", "Condition": { "Bool": { "aws:SecureTransport": "false" }' ``` <optional> and <bucket name> will be specific to your account 5. Repeat for all the buckets in your AWS account. #### From Command Line: 1. List all of the S3 Buckets ``` aws s3 ls ``` 2. Using the list of buckets run this command on each of them: ``` aws s3api get-bucket-policy --bucket <bucket_name> | grep aws:SecureTransport ``` - 3. Confirm that aws:SecureTransport is set to false aws:SecureTransport:false - 4. Confirm that the policy line has Effect set to Deny 'Effect:Deny' #### Remediation: #### From Console: - 1. Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Select the Check box next to the Bucket. - 3. Click on 'Permissions'. - 4. Click 'Bucket Policy' - 5. Add this to the existing policy filling in the required information ``` "Sid": <optional>", "Effect": "Deny", "Principal": "*", "Action": "s3:*", "Resource": "arn:aws:s3:::<bucket_name>/*", "Condition": { "Bool": { "aws:SecureTransport": "false" } } } ``` - 6. Save - 7. Repeat for all the buckets in your AWS account that contain sensitive data. #### From Console using AWS Policy Generator: - 1. Repeat steps 1-4 above. - 2. Click on Policy Generator at the bottom of the Bucket Policy Editor - 3. Select Policy Type S3 Bucket Policy - 4. Add Statements - Effect = Deny - Principal = * - AWS Service = Amazon S3 - Actions = * - Amazon Resource Name = <ARN of the S3 Bucket> - 5. Generate Policy - 6. Copy the text and add it to the Bucket Policy. #### From Command Line: 1. Export the bucket policy to a json file. ``` aws s3api get-bucket-policy --bucket <bucket_name> --query Policy --output text > policy.json ``` 2. Modify the policy.json file by adding in this statement: ``` "Sid": <optional>", "Effect": "Deny", "Principal": "*", "Action": "s3:*", "Resource": "arn:aws:s3:::<bucket_name>/*", "Condition": { "Bool": { "aws:SecureTransport": "false" } } } ``` 3. Apply this modified policy back to the S3 bucket: ``` aws s3api put-bucket-policy --bucket <bucket_name> --policy file://policy.json ``` #### References: - https://aws.amazon.com/premiumsupport/knowledge-center/s3-bucket-policy-for-config-rule/ - 2. https://aws.amazon.com/blogs/security/how-to-use-bucket-policies-and-apply-defense-in-depth-to-help-secure-your-amazon-s3-data/ - 3. https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/get-bucket-policy.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 3.10 Encrypt Sensitive Data in Transit Encrypt sensitive data in transit. Example implementations can include: Transport Layer Security (TLS) and Open Secure Shell (OpenSSH). | | • | • | | v7 | 14.4 Encrypt All Sensitive Information in Transit Encrypt all sensitive information in transit. | | • | • | # 2.1.3 Ensure MFA Delete is enabled on S3 buckets (Automated) ## **Profile Applicability:** Level 1 #### **Description:** Once MFA Delete is enabled on your sensitive and classified S3 bucket it requires the user to have two forms of authentication. #### Rationale: Adding MFA delete to an S3 bucket, requires additional authentication when you change the version state of your bucket or you delete and object version adding another layer of security in the event your security credentials are compromised or unauthorized access is granted. #### Audit: Perform the steps below to confirm MFA delete is configured on an S3 Bucket **From Console:** - 1. Login to the S3 console at https://console.aws.amazon.com/s3/ - 2. Click the Check box next to the Bucket name you want to confirm - 3. In the window under Properties - 4. Confirm that Versioning is Enabled - 5. Confirm that MFA Delete is Enabled #### From Command Line: 1. Run the get-bucket-versioning ``` aws s3api get-bucket-versioning --bucket my-bucket ``` #### Output example: If the Console or the CLI output does not show Versioning and MFA Delete enabled refer to the remediation below. ### Remediation: Perform the steps below to enable MFA delete on an S3 bucket. - -You cannot enable MFA Delete using the AWS Management Console. You must use the AWS CLI or API. - -You must use your 'root' account to enable MFA Delete on S3 buckets. #### From Command line: 1. Run the s3api put-bucket-versioning command aws s3api put-bucket-versioning --profile my-root-profile --bucket Bucket_Name --versioning-configuration Status=Enabled, MFADelete=Enabled --mfa "arn:aws:iam::aws account id:mfa/root-account-mfa-device passcode" #### References: - 1. https://docs.aws.amazon.com/AmazonS3/latest/dev/Versioning.html#MultiFactor AuthenticationDelete - 2. https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingMFADelete.html - 3. https://aws.amazon.com/blogs/security/securing-access-to-aws-using-mfa-part-3/ - 4. https://docs.aws.amazon.com/IAM/latest/UserGuide/id credentials mfa lost-or-broken.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v8 | 6.5 Require MFA for Administrative Access Require MFA for all administrative access accounts, where supported, on all enterprise assets, whether managed on-site or through a third-party provider. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | # 2.1.4 Ensure all data in Amazon S3 has been discovered, classified and secured when required. (Manual) # **Profile Applicability:** Level 2 ## **Description:** Amazon S3 buckets can contain sensitive data, that for security purposes should be discovered, monitored, classified and protected. Macie along with other 3rd party tools
can automatically provide an inventory of Amazon S3 buckets. #### Rationale: Using a Cloud service or 3rd Party software to continuously monitor and automate the process of data discovery and classification for S3 buckets using machine learning and pattern matching is a strong defense in protecting that information. Amazon Macie is a fully managed data security and data privacy service that uses machine learning and pattern matching to discover and protect your sensitive data in AWS. ### Impact: There is a cost associated with using Amazon Macie. There is also typically a cost associated with 3rd Party tools that perform similar processes and protection. #### Audit: Perform the following steps to determine if Macie is running: #### From Console: - 1. Login to the Macie console at https://console.aws.amazon.com/macie/ - 2. In the left hand pane click on By job under findings. - 3. Confirm that you have a Job setup for your S3 Buckets When you log into the Macie console if you aren't taken to the summary page and you don't have a job setup and running then refer to the remediation procedure below. If you are using a 3rd Party tool to manage and protect your s3 data you meet this recommendation. #### Remediation: Perform the steps below to enable and configure Amazon Macie **From Console:** - 1. Log on to the Macie console at https://console.aws.amazon.com/macie/ - 2. Click Get started. 3. Click Enable Macie. ## Setup a repository for sensitive data discovery results - 1. In the Left pane, under Settings, click Discovery results. - 2. Make sure Create bucket is selected. - 3. Create a bucket, enter a name for the bucket. The name must be unique across all S3 buckets. In addition, the name must start with a lowercase letter or a number. - 4. Click on Advanced. - 5. Block all public access, make sure Yes is selected. - 6. KMS encryption, specify the AWS KMS key that you want to use to encrypt the results. The key must be a symmetric, customer master key (CMK) that's in the same Region as the S3 bucket. - 7. Click on Save ## Create a job to discover sensitive data - 1. In the left pane, click s3 buckets. Macie displays a list of all the S3 buckets for your account. - 2. Select the check box for each bucket that you want Macie to analyze as part of the job - 3. Click Create job. - 4. Click Quick create. - 5. For the Name and description step, enter a name and, optionally, a description of the job. - 6. Then click Next. - 7. For the Review and create step, click submit. #### Review your findings - 1. In the left pane, click Findings. - 2. To view the details of a specific finding, choose any field other than the check box for the finding. If you are using a 3rd Party tool to manage and protect your s3 data, follow the Vendor documentation for implementing and configuring that tool. #### References: - 1. https://aws.amazon.com/macie/getting-started/ - 2. https://docs.aws.amazon.com/workspaces/latest/adminguide/data-protection.html - 3. https://docs.aws.amazon.com/macie/latest/user/data-classification.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.1 Establish and Maintain a Data Management Process Establish and maintain a data management process. In the process, address data sensitivity, data owner, handling of data, data retention limits, and disposal requirements, based on sensitivity and retention standards for the enterprise. Review and update documentation annually, or when significant enterprise changes occur that could impact this Safeguard. | • | • | • | | v7 | 5.1 <u>Establish Secure Configurations</u> Maintain documented, standard security configuration standards for all authorized operating systems and software. | • | • | • | # 2.1.5 Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' (Automated) # **Profile Applicability:** Level 1 #### **Description:** Amazon S3 provides Block public access (bucket settings) and Block public access (account settings) to help you manage public access to Amazon S3 resources. By default, S3 buckets and objects are created with public access disabled. However, an IAM principal with sufficient S3 permissions can enable public access at the bucket and/or object level. While enabled, Block public access (bucket settings) prevents an individual bucket, and its contained objects, from becoming publicly accessible. Similarly, Block public access (account settings) prevents all buckets, and contained objects, from becoming publicly accessible across the entire account. #### Rationale: Amazon S3 Block public access (bucket settings) prevents the accidental or malicious public exposure of data contained within the respective bucket(s). Amazon S3 Block public access (account settings) prevents the accidental or malicious public exposure of data contained within all buckets of the respective AWS account. Whether blocking public access to all or some buckets is an organizational decision that should be based on data sensitivity, least privilege, and use case. #### Impact: When you apply Block Public Access settings to an account, the settings apply to all AWS Regions globally. The settings might not take effect in all Regions immediately or simultaneously, but they eventually propagate to all Regions. #### Audit: # If utilizing Block Public Access (bucket settings) From Console: - 1. Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Select the Check box next to the Bucket. - 3. Click on 'Edit public access settings'. - 4. Ensure that block public access settings are set appropriately for this bucket - 5. Repeat for all the buckets in your AWS account. #### From Command Line: 1. List all of the S3 Buckets ``` aws s3 ls ``` 2. Find the public access setting on that bucket ``` aws s3api get-public-access-block --bucket <name-of-the-bucket> ``` Output if Block Public access is enabled: ``` { "PublicAccessBlockConfiguration": { "BlockPublicAcls": true, "IgnorePublicAcls": true, "BlockPublicPolicy": true, "RestrictPublicBuckets": true } ``` If the output reads false for the separate configuration settings then proceed to the remediation. # If utilizing Block Public Access (account settings) From Console: - 1. Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Choose Block public access (account settings) - Ensure that block public access settings are set appropriately for your AWS account. #### From Command Line: To check Public access settings for this account status, run the following command, aws s3control get-public-access-block --account-id <ACCT_ID> --region <REGION NAME> Output if Block Public access is enabled: ``` { "PublicAccessBlockConfiguration": { "IgnorePublicAcls": true, "BlockPublicPolicy": true, "BlockPublicAcls": true, "RestrictPublicBuckets": true } } ``` If the output reads false for the separate configuration settings then proceed to the remediation. #### Remediation: # If utilizing Block Public Access (bucket settings) From Console: - Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Select the Check box next to the Bucket. - 3. Click on 'Edit public access settings'. - 4. Click 'Block all public access' - 5. Repeat for all the buckets in your AWS account that contain sensitive data. #### From Command Line: 1. List all of the S3 Buckets aws s3 ls 2. Set the Block Public Access to true on that bucket aws s3api put-public-access-block --bucket <name-of-bucket> --public-accessblock-configuration "BlockPublicAcls=true, IgnorePublicAcls=true, BlockPublicPolicy=true, RestrictPu blicBuckets=true" # If utilizing Block Public Access (account settings) From Console: If the output reads true for the separate configuration settings then it is set on the account. - 1. Login to AWS Management Console and open the Amazon S3 console using https://console.aws.amazon.com/s3/ - 2. Choose Block Public Access (account settings) - 3. Choose ${\tt Edit}$ to change the block public access settings for all the buckets in your AWS account - 4. Choose the settings you want to change, and then choose <code>save</code>. For details about each setting, pause on the <code>i</code> icons. - 5. When you're asked for confirmation, enter confirm. Then Click confirm to save your changes. #### From Command Line: To set Block Public access settings for this account, run the following command: aws s3control put-public-access-block --public-access-block-configuration BlockPublicAcls=true, IgnorePublicAcls=true, BlockPublicPolicy=true, RestrictPublicBuckets=true --account-id <value> # References: 1. https://docs.aws.amazon.com/AmazonS3/latest/user-guide/block-public-access-account.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access
control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | # 2.2 Elastic Compute Cloud (EC2) This section contains recommendations for configuring AWS Elastic Compute Cloud (EC2) # 2.2.1 Ensure EBS Volume Encryption is Enabled in all Regions (Automated) ## **Profile Applicability:** Level 1 #### **Description:** Elastic Compute Cloud (EC2) supports encryption at rest when using the Elastic Block Store (EBS) service. While disabled by default, forcing encryption at EBS volume creation is supported. #### Rationale: Encrypting data at rest reduces the likelihood that it is unintentionally exposed and can nullify the impact of disclosure if the encryption remains unbroken. #### Impact: Losing access or removing the KMS key in use by the EBS volumes will result in no longer being able to access the volumes. #### Audit: #### From Console: - Login to AWS Management Console and open the Amazon EC2 console using https://console.aws.amazon.com/ec2/ - 2. Under Account attributes, click EBS encryption. - 3. Verify Always encrypt new EBS volumes displays Enabled. - 4. Review every region in-use. **Note:** EBS volume encryption is configured per region. #### From Command Line: 1. Run ### aws --region <region> ec2 get-ebs-encryption-by-default - 2. Verify that "EbsEncryptionByDefault": true is displayed. - 3. Review every region in-use. **Note:** EBS volume encryption is configured per region. ### Remediation: #### From Console: - Login to AWS Management Console and open the Amazon EC2 console using https://console.aws.amazon.com/ec2/ - 2. Under Account attributes, click EBS encryption. - 3. Click Manage. - 4. Click the Enable checkbox. - 5. Click Update EBS encryption - 6. Repeat for every region requiring the change. Note: EBS volume encryption is configured per region. #### From Command Line: 1. Run aws --region <region> ec2 enable-ebs-encryption-by-default - 2. Verify that "EbsEncryptionByDefault": true is displayed. - 3. Repeat every region requiring the change. **Note:** EBS volume encryption is configured per region. #### References: - 1. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html - 2. https://aws.amazon.com/blogs/aws/new-opt-in-to-default-encryption-for-new-ebs-volumes/ #### **Additional Information:** Default EBS volume encryption only applies to newly created EBS volumes. Existing EBS volumes are **not** converted automatically. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data. | | • | • | | v7 | 14.8 Encrypt Sensitive Information at Rest Encrypt all sensitive information at rest using a tool that requires a secondary authentication mechanism not integrated into the operating system, in order to access the information. | | | • | # 2.3 Relational Database Service (RDS) This section contains recommendations for configuring AWS Relational Database Services (RDS) # 2.3.1 Ensure that encryption is enabled for RDS Instances (Automated) # **Profile Applicability:** Level 1 ### **Description:** Amazon RDS encrypted DB instances use the industry standard AES-256 encryption algorithm to encrypt your data on the server that hosts your Amazon RDS DB instances. After your data is encrypted, Amazon RDS handles authentication of access and decryption of your data transparently with a minimal impact on performance. #### Rationale: Databases are likely to hold sensitive and critical data, it is highly recommended to implement encryption in order to protect your data from unauthorized access or disclosure. With RDS encryption enabled, the data stored on the instance's underlying storage, the automated backups, read replicas, and snapshots, are all encrypted. #### Audit: #### From Console: - 1. Login to the AWS Management Console and open the RDS dashboard at https://console.aws.amazon.com/rds/ - 2. In the navigation pane, under RDS dashboard, click Databases. - 3. Select the RDS Instance that you want to examine - 4. Click Instance Name to see details, then click on Configuration tab. - 5. Under Configuration Details section, In Storage pane search for the Encryption Enabled Status. - 6. If the current status is set to Disabled, Encryption is not enabled for the selected RDS Instance database instance. - 7. Repeat steps 3 to 7 to verify encryption status of other RDS Instance in same region. - 8. Change region from the top of the navigation bar and repeat audit for other regions. #### From Command Line: 1. Run describe-db-instances command to list all RDS Instance database names, available in the selected AWS region, Output will return each Instance database identifier-name. ``` aws rds describe-db-instances --region <region-name> --query 'DBInstances[*].DBInstanceIdentifier' ``` 2. Run again describe-db-instances command using the RDS Instance identifier returned earlier, to determine if the selected database instance is encrypted, The command output should return the encryption status True Or False. ``` aws rds describe-db-instances --region <region-name> --db-instance-identifier <DB-Name> --query 'DBInstances[*].StorageEncrypted' ``` - 3. If the StorageEncrypted parameter value is False, Encryption is not enabled for the selected RDS database instance. - 4. Repeat steps 1 to 3 for auditing each RDS Instance and change Region to verify for other regions #### Remediation: #### From Console: - 1. Login to the AWS Management Console and open the RDS dashboard at https://console.aws.amazon.com/rds/. - 2. In the left navigation panel, click on Databases - 3. Select the Database instance that needs to be encrypted. - 4. Click on Actions button placed at the top right and select Take Snapshot. - 5. On the Take Snapshot page, enter a database name of which you want to take a snapshot in the Snapshot Name field and click on Take Snapshot. - 6. Select the newly created snapshot and click on the Action button placed at the top right and select Copy snapshot from the Action menu. - 7. On the Make Copy of DB Snapshot page, perform the following: - In the New DB Snapshot Identifier field, Enter a name for the new snapshot. - Check Copy Tags, New snapshot must have the same tags as the source snapshot. - Select Yes from the Enable Encryption dropdown list to enable encryption, You can choose to use the AWS default encryption key or custom key from Master Key dropdown list. - 8. Click Copy Snapshot to create an encrypted copy of the selected instance snapshot. - 9. Select the new Snapshot Encrypted Copy and click on the Action button placed at the top right and select Restore Snapshot button from the Action menu, This will restore the encrypted snapshot to a new database instance. - 10. On the Restore DB Instance page, enter a unique name for the new database instance in the DB Instance Identifier field. - 11. Review the instance configuration details and click Restore DB Instance. 12. As the new instance provisioning process is completed can update application configuration to refer to the endpoint of the new Encrypted database instance Once the database endpoint is changed at the application level, can remove the unencrypted instance. #### From Command Line: 1. Run describe-db-instances command to list all RDS database names available in the selected AWS region, The command output should return the database instance identifier. ``` aws rds describe-db-instances --region <region-name> --query 'DBInstances[*].DBInstanceIdentifier' ``` 2. Run create-db-snapshot command to create a snapshot for the selected database instance, The command output will return the new snapshot with name DB Snapshot Name. ``` aws rds create-db-snapshot --region <region-name> --db-snapshot-identifier <DB-Snapshot-Name> --db-instance-identifier <DB-Name> ``` 3. Now run list-aliases command to list the KMS keys aliases available in a specified region, The command output should return each key alias currently available. For our RDS encryption activation process, locate the ID of the AWS default KMS key. ``` aws kms list-aliases --region <region-name> ``` 4. Run copy-db-snapshot command using the default KMS key ID for RDS instances returned earlier to create an encrypted copy of the database instance snapshot, The command output will return the encrypted instance snapshot configuration. ``` aws rds copy-db-snapshot --region <region-name> --source-db-snapshot- identifier
<DB-Snapshot-Name> --target-db-snapshot-identifier <DB-Snapshot- Name-Encrypted> --copy-tags --kms-key-id <KMS-ID-For-RDS> ``` 5. Run restore-db-instance-from-db-snapshot command to restore the encrypted snapshot created at the previous step to a new database instance, If successful, the command output should return the new encrypted database instance configuration. aws rds restore-db-instance-from-db-snapshot --region <region-name> --dbinstance-identifier <DB-Name-Encrypted> --db-snapshot-identifier <DB-Snapshot-Name-Encrypted> 6. Run describe-db-instances command to list all RDS database names, available in the selected AWS region, Output will return database instance identifier name Select encrypted database name that we just created DB-Name-Encrypted. ``` aws rds describe-db-instances --region <region-name> --query 'DBInstances[*].DBInstanceIdentifier' ``` 7. Run again describe-db-instances command using the RDS instance identifier returned earlier, to determine if the selected database instance is encrypted, The command output should return the encryption status True. aws rds describe-db-instances --region <region-name> --db-instance-identifier <DB-Name-Encrypted> --query 'DBInstances[*].StorageEncrypted' #### References: - 1. https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.Encryption.html - 2. https://aws.amazon.com/blogs/database/selecting-the-right-encryption-options-for-amazon-rds-and-amazon-aurora-database-engines/#:~:text=With%20RDS%2Dencrypted%20resources%2C%20data,transparent%20to%20your%20database%20engine. - 3. https://aws.amazon.com/rds/features/security/ | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data. | | • | • | | v7 | 14.8 Encrypt Sensitive Information at Rest Encrypt all sensitive information at rest using a tool that requires a secondary authentication mechanism not integrated into the operating system, in order to access the information. | | | • | # 2.3.2 Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances (Automated) # **Profile Applicability:** Level 1 #### **Description:** Ensure that RDS database instances have the Auto Minor Version Upgrade flag enabled in order to receive automatically minor engine upgrades during the specified maintenance window. So, RDS instances can get the new features, bug fixes, and security patches for their database engines. #### Rationale: AWS RDS will occasionally deprecate minor engine versions and provide new ones for an upgrade. When the last version number within the release is replaced, the version changed is considered minor. With Auto Minor Version Upgrade feature enabled, the version upgrades will occur automatically during the specified maintenance window so your RDS instances can get the new features, bug fixes, and security patches for their database engines. #### Audit: #### From Console: - 1. Log in to the AWS management console and navigate to the RDS dashboard at https://console.aws.amazon.com/rds/. - 2. In the left navigation panel, click on Databases. - 3. Select the RDS instance that wants to examine. - 4. Click on the Maintenance and backups panel. - 5. Under the Maintenance section, search for the Auto Minor Version Upgrade status. - If the current status is set to <code>Disabled</code>, means the feature is not set and the minor engine upgrades released will not be applied to the selected RDS instance #### From Command Line: 1. Run describe-db-instances command to list all RDS database names, available in the selected AWS region: aws rds describe-db-instances --region <regionName> --query 'DBInstances[*].DBInstanceIdentifier' - 2. The command output should return each database instance identifier. - 3. Run again describe-db-instances command using the RDS instance identifier returned earlier to determine the Auto Minor Version Upgrade status for the selected instance: ``` aws rds describe-db-instances --region <regionName> --db-instance-identifier <dbInstanceIdentifier> --query 'DBInstances[*].AutoMinorVersionUpgrade' ``` 4. The command output should return the feature current status. If the current status is set to true, the feature is enabled and the minor engine upgrades will be applied to the selected RDS instance. #### Remediation: ### From Console: - 1. Log in to the AWS management console and navigate to the RDS dashboard at https://console.aws.amazon.com/rds/. - 2. In the left navigation panel, click on Databases. - 3. Select the RDS instance that wants to update. - 4. Click on the Modify button placed on the top right side. - 5. On the Modify DB Instance: <instance identifier> page, In the Maintenance section, select Auto minor version upgrade click on the Yes radio button. - 6. At the bottom of the page click on Continue, check to Apply Immediately to apply the changes immediately, or select Apply during the next scheduled maintenance window to avoid any downtime. - 7. Review the changes and click on Modify DB Instance. The instance status should change from available to modifying and back to available. Once the feature is enabled, the Auto Minor Version Upgrade status should change to Yes. #### From Command Line: 1. Run describe-db-instances command to list all RDS database instance names, available in the selected AWS region: ``` aws rds describe-db-instances --region <regionName> --query 'DBInstances[*].DBInstanceIdentifier' ``` - 2. The command output should return each database instance identifier. - 3. Run the modify-db-instance command to modify the selected RDS instance configuration this command will apply the changes immediately, Remove -- apply-immediately to apply changes during the next scheduled maintenance window and avoid any downtime: aws rds modify-db-instance --region <regionName> --db-instance-identifier <dbInstanceIdentifier> --auto-minor-version-upgrade --apply-immediately - 4. The command output should reveal the new configuration metadata for the RDS instance and check AutoMinorVersionUpgrade parameter value. - 5. Run describe-db-instances command to check if the Auto Minor Version Upgrade feature has been successfully enable: aws rds describe-db-instances --region <regionName> --db-instance-identifier <dbInstanceIdentifier> --query 'DBInstances[*].AutoMinorVersionUpgrade' 6. The command output should return the feature current status set to true, the feature is enabled and the minor engine upgrades will be applied to the selected RDS instance. #### References: - 1. https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP RDS Mana ging.html - 2. https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER UpgradeDB linstance.Upgrading.html - 3. https://aws.amazon.com/rds/fags/ | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 7.4 Perform Automated Application Patch Management Perform application updates on enterprise assets through automated patch management on a monthly, or more frequent, basis. | • | • | • | | v7 | 3.5 <u>Deploy Automated Software Patch Management Tools</u> Deploy automated software update tools in order to ensure that third-party software on all systems is running the most recent security updates provided by the software vendor. | • | • | • | # 2.3.3 Ensure that public access is not given to RDS Instance (Automated) ## **Profile Applicability:** Level 1 #### **Description:** Ensure and verify that RDS database instances provisioned in your AWS account do restrict unauthorized access in order to minimize security risks. To restrict access to any publicly accessible RDS database instance, you must disable the database Publicly Accessible flag and update the VPC security group associated with the instance. #### Rationale: Ensure that no public-facing RDS database instances are provisioned in your AWS account and restrict unauthorized access in order to minimize security risks. When the RDS instance allows unrestricted access (0.0.0.0/0), everyone and everything on the Internet can establish a connection to your database and this can increase the opportunity for malicious activities such as brute force attacks, PostgreSQL injections, or DoS/DDoS attacks. #### Audit: #### From Console: - 1. Log in to the AWS
management console and navigate to the RDS dashboard at https://console.aws.amazon.com/rds/. - 2. Under the navigation panel, On RDS Dashboard, click Databases. - 3. Select the RDS instance that you want to examine. - 4. Click Instance Name from the dashboard, Under 'Connectivity and Security. - 5. On the Security, check if the Publicly Accessible flag status is set to Yes, follow the below-mentioned steps to check database subnet access. - In the networking section, click the subnet link available under Subnets - The link will redirect you to the VPC Subnets page. - Select the subnet listed on the page and click the Route Table tab from the dashboard bottom panel. If the route table contains any entries with the destination CIDR block set to 0.0.0.0/0 and with an Internet Gateway attached. - The selected RDS database instance was provisioned inside a public subnet, therefore is not running within a logically isolated environment and can be accessible from the Internet. - 6. Repeat steps no. 4 and 5 to determine the type (public or private) and subnet for other RDS database instances provisioned in the current region. - 7. Change the AWS region from the navigation bar and repeat the audit process for other regions. #### From Command Line: 1. Run describe-db-instances command to list all RDS database names, available in the selected AWS region: ``` aws rds describe-db-instances --region <region-name> --query 'DBInstances[*].DBInstanceIdentifier' ``` - 2. The command output should return each database instance identifier. - 3. Run again describe-db-instances command using the PubliclyAccessible parameter as query filter to reveal the database instance Publicly Accessible flag status: ``` aws rds describe-db-instances --region <region-name> --db-instance-identifier <db-instance-name> --query 'DBInstances[*].PubliclyAccessible' ``` - 4. Check for the Publicly Accessible parameter status, If the Publicly Accessible flag is set to Yes. Then selected RDS database instance is publicly accessible and insecure, follow the below-mentioned steps to check database subnet access - 5. Run again describe-db-instances command using the RDS database instance identifier that you want to check and appropriate filtering to describe the VPC subnet(s) associated with the selected instance: ``` aws rds describe-db-instances --region <region-name> --db-instance-identifier <db-name> --query 'DBInstances[*].DBSubnetGroup.Subnets[]' ``` - The command output should list the subnets available in the selected database subnet group. - 6. Run describe-route-tables command using the ID of the subnet returned at the previous step to describe the routes of the VPC route table associated with the selected subnet: ``` aws ec2 describe-route-tables --region <region-name> --filters "Name=association.subnet-id, Values=<SubnetID>" --query 'RouteTables[*].Routes[]' ``` • If the command returns the route table associated with database instance subnet ID. Check the <code>GatewayId</code> and <code>DestinationCidrBlock</code> attributes values returned in the output. If the route table contains any entries with the <code>GatewayId</code> value set to <code>igw-xxxxxxxx</code> and the <code>DestinationCidrBlock</code> value set to <code>0.0.0.0/0</code>, the selected RDS database instance was provisioned inside a public subnet. - Or - If the command returns empty results, the route table is implicitly associated with subnet, therefore the audit process continues with the next step - 7. Run again describe-db-instances command using the RDS database instance identifier that you want to check and appropriate filtering to describe the VPC ID associated with the selected instance: ``` aws rds describe-db-instances --region <region-name> --db-instance-identifier <db-name> --query 'DBInstances[*].DBSubnetGroup.VpcId' ``` - The command output should show the VPC ID in the selected database subnet group - 8. Now run describe-route-tables command using the ID of the VPC returned at the previous step to describe the routes of the VPC main route table implicitly associated with the selected subnet: ``` aws ec2 describe-route-tables --region <region-name> --filters "Name=vpc- id, Values=<VPC-ID>" "Name=association.main, Values=true" --query 'RouteTables[*].Routes[]' ``` The command output returns the VPC main route table implicitly associated with database instance subnet ID. Check the <code>GatewayId</code> and <code>DestinationCidrBlock</code> attributes values returned in the output. If the route table contains any entries with the <code>GatewayId</code> value set to <code>igw-xxxxxxxx</code> and the <code>DestinationCidrBlock</code> value set to <code>0.0.0.0/0</code>, the selected RDS database instance was provisioned inside a public subnet, therefore is not running within a logically isolated environment and does not adhere to AWS security best practices. ## Remediation: #### From Console: - 1. Log in to the AWS management console and navigate to the RDS dashboard at https://console.aws.amazon.com/rds/. - 2. Under the navigation panel, On RDS Dashboard, click Databases. - 3. Select the RDS instance that you want to update. - 4. Click Modify from the dashboard top menu. - 5. On the Modify DB Instance panel, under the Connectivity section, click on Additional connectivity configuration and update the value for Publicly Accessible to Not publicly accessible to restrict public access. Follow the below steps to update subnet configurations: - Select the Connectivity and security tab, and click on the VPC attribute value inside the Networking section. - Select the Details tab from the VPC dashboard bottom panel and click on Route table configuration attribute value. - On the Route table details page, select the Routes tab from the dashboard bottom panel and click on Edit routes. - On the Edit routes page, update the Destination of Target which is set to igw-xxxx and click on save routes. - 6. On the Modify DB Instance panel Click on Continue and In the Scheduling of modifications section, perform one of the following actions based on your requirements: - Select Apply during the next scheduled maintenance window to apply the changes automatically during the next scheduled maintenance window. - Select Apply immediately to apply the changes right away. With this option, any pending modifications will be asynchronously applied as soon as possible, regardless of the maintenance window setting for this RDS database instance. Note that any changes available in the pending modifications queue are also applied. If any of the pending modifications require downtime, choosing this option can cause unexpected downtime for the application. - 7. Repeat steps 3 to 6 for each RDS instance available in the current region. - 8. Change the AWS region from the navigation bar to repeat the process for other regions. #### From Command Line: 1. Run describe-db-instances command to list all RDS database names identifiers, available in the selected AWS region: ``` aws rds describe-db-instances --region <region-name> --query 'DBInstances[*].DBInstanceIdentifier' ``` - The command output should return each database instance identifier. - 3. Run modify-db-instance command to modify the selected RDS instance configuration. Then use the following command to disable the Publicly Accessible flag for the selected RDS instances. This command use the apply-immediately flag. If you want to avoid any downtime --no-apply-immediately flag can be used: ``` aws rds modify-db-instance --region <region-name> --db-instance-identifier <db-name> --no-publicly-accessible --apply-immediately ``` 4. The command output should reveal the PubliclyAccessible configuration under pending values and should get applied at the specified time. - 5. Updating the Internet Gateway Destination via AWS CLI is not currently supported To update information about Internet Gateway use the AWS Console Procedure. - 6. Repeat steps 1 to 5 for each RDS instance provisioned in the current region. - 7. Change the AWS region by using the --region filter to repeat the process for other regions. #### References: - 1. https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.htm - 2. https://docs.aws.amazon.com/vpc/latest/userguide/VPC Scenario2.html - 3. https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html - 4. https://aws.amazon.com/rds/faqs/ | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | | .4 Elastic File System (EFS) | |------------------------------| |
2.4.1 Ensure that encryption is enabled for EFS file systems (Manual) # **Profile Applicability:** • Level 1 ### **Description:** EFS data should be encrypted at rest using AWS KMS (Key Management Service). #### Rationale: Data should be encrypted at rest to reduce the risk of a data breach via direct access to the storage device. #### Audit: #### From Console: - Login to the AWS Management Console and Navigate to `Elastic File System (EFS) dashboard. - 2. Select File Systems from the left navigation panel. - 3. Each item on the list has a visible Encrypted field that displays data at rest encryption status. - 4. Validate that this field reads Encrypted for all EFS file systems in all AWS regions. #### From CLI: 1. Run describe-file-systems command using custom query filters to list the identifiers of all AWS EFS file systems currently available within the selected region: ``` aws efs describe-file-systems --region <region> --output table --query 'FileSystems[*].FileSystemId' ``` - 2. The command output should return a table with the requested file system IDs. - 3. Run describe-file-systems command using the ID of the file system that you want to examine as identifier and the necessary query filters: ``` aws efs describe-file-systems --region <region> --file-system-id <file- system-id from step 2 output> --query 'FileSystems[*].Encrypted' ``` 4. The command output should return the file system encryption status true or false. If the returned value is false, the selected AWS EFS file system is not encrypted and if the returned value is true, the selected AWS EFS file system is encrypted. #### Remediation: # It is important to note that EFS file system data at rest encryption must be turned on when creating the file system. If an EFS file system has been created without data at rest encryption enabled then you must create another EFS file system with the correct configuration and transfer the data. Steps to create an EFS file system with data encrypted at rest: From Console: - 1. Login to the AWS Management Console and Navigate to Elastic File System (EFS) dashboard. - 2. Select File Systems from the left navigation panel. - 3. Click Create File System button from the dashboard top menu to start the file system setup process. - 4. On the Configure file system access configuration page, perform the following actions. - Choose the right VPC from the VPC dropdown list. - Within Create mount targets section, select the checkboxes for all of the Availability Zones (AZs) within the selected VPC. These will be your mount targets. - Click Next step to continue. - 5. Perform the following on the Configure optional settings page. - Create tags to describe your new file system. - Choose performance mode based on your requirements. - Check Enable encryption checkbox and choose aws/elasticfilesystem from Select KMS master key dropdown list to enable encryption for the new file system using the default master key provided and managed by AWS KMS. - Click Next step to continue. - 6. Review the file system configuration details on the review and create page and then click Create File System to create your new AWS EFS file system. - 7. Copy the data from the old unencrypted EFS file system onto the newly create encrypted file system. - 8. Remove the unencrypted file system as soon as your data migration to the newly create encrypted file system is completed. - 9. Change the AWS region from the navigation bar and repeat the entire process for other aws regions. #### From CLI: 1. Run describe-file-systems command to describe the configuration information available for the selected (unencrypted) file system (see Audit section to identify the right resource): aws efs describe-file-systems --region <region> --file-system-id <filesystem-id from audit section step 2 output> - 2. The command output should return the requested configuration information. - 3. To provision a new AWS EFS file system, you need to generate a universally unique identifier (UUID) in order to create the token required by the create-file-system command. To create the required token, you can use a randomly generated UUID from "https://www.uuidgenerator.net". - 4. Run create-file-system command using the unique token created at the previous step. aws efs create-file-system --region <region> --creation-token <Token (randomly generated UUID from step 3)> --performance-mode generalPurpose -encrypted - 5. The command output should return the new file system configuration metadata. - 6. Run create-mount-target command using the newly created EFS file system ID returned at the previous step as identifier and the ID of the Availability Zone (AZ) that will represent the mount target: aws efs create-mount-target --region <region> --file-system-id <file-system-id> --subnet-id <subnet-id> - 7. The command output should return the new mount target metadata. - 8. Now you can mount your file system from an EC2 instance. - 9. Copy the data from the old unencrypted EFS file system onto the newly create encrypted file system. - 10. Remove the unencrypted file system as soon as your data migration to the newly create encrypted file system is completed. aws efs delete-file-system --region <region> --file-system-id <unencryptedfile-system-id> 11. Change the AWS region by updating the --region and repeat the entire process for other aws regions. #### **Default Value:** EFS file system data is encrypted at rest by default when creating a file system via the Console. Encryption at rest is not enabled by default when creating a new file system using the AWS CLI, API, and SDKs. #### References: - 1. https://docs.aws.amazon.com/efs/latest/ug/encryption-at-rest.html - 2. https://awscli.amazonaws.com/v2/documentation/api/latest/reference/efs/index.ht ml#efs | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data. | | • | • | | v7 | 14.8 Encrypt Sensitive Information at Rest Encrypt all sensitive information at rest using a tool that requires a secondary authentication mechanism not integrated into the operating system, in order to access the information. | | | • | # 3 Logging # 3.1 Ensure CloudTrail is enabled in all regions (Automated) ## **Profile Applicability:** Level 1 #### **Description:** AWS CloudTrail is a web service that records AWS API calls for your account and delivers log files to you. The recorded information includes the identity of the API caller, the time of the API call, the source IP address of the API caller, the request parameters, and the response elements returned by the AWS service. CloudTrail provides a history of AWS API calls for an account, including API calls made via the Management Console, SDKs, command line tools, and higher-level AWS services (such as CloudFormation). #### Rationale: The AWS API call history produced by CloudTrail enables security analysis, resource change tracking, and compliance auditing. Additionally, - ensuring that a multi-regions trail exists will ensure that unexpected activity occurring in otherwise unused regions is detected - ensuring that a multi-regions trail exists will ensure that Global Service Logging is enabled for a trail by default to capture recording of events generated on AWS global services - for a multi-regions trail, ensuring that management events configured for all type of Read/Writes ensures recording of management operations that are performed on all resources in an AWS account #### Impact: S3 lifecycle features can be used to manage the accumulation and management of logs over time. See the following AWS resource for more information on these features: 1. https://docs.aws.amazon.com/AmazonS3/latest/dev/object-lifecycle-mgmt.html #### Audit: Perform the following to determine if CloudTrail is enabled for all regions: #### From Console: - 1. Sign in to the AWS Management Console and open the CloudTrail console at https://console.aws.amazon.com/cloudtrail - 2. Click on Trails on the left navigation pane - You will be presented with a list of trails across all regions - 3. Ensure at least one Trail has All specified in the Region column - 4. Click on a trail via the link in the Name column - 5. Ensure Logging is set to ON - 6. Ensure Apply trail to all regions is set to Yes - 7. In section Management Events ensure Read/Write Events set to ALL #### From Command Line: ``` aws cloudtrail describe-trails ``` Ensure IsMultiRegionTrail is set to true ``` aws cloudtrail get-trail-status --name <trailname shown in describe-trails> ``` Ensure IsLogging is set to true ``` aws cloudtrail get-event-selectors --trail-name <trailname shown in describe- trails> ``` Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All #### Remediation: Perform the following to enable global (Multi-region) CloudTrail logging: #### From Console: - 1. Sign in to the AWS
Management Console and open the IAM console at https://console.aws.amazon.com/cloudtrail - 2. Click on *Trails* on the left navigation pane - 3. Click Get Started Now, if presented - Click Add new trail - Enter a trail name in the Trail name box - Set the Apply trail to all regions option to Yes - Specify an S3 bucket name in the s3 bucket box - Click Create - 4. If 1 or more trails already exist, select the target trail to enable for global logging - 5. Click the edit icon (pencil) next to Apply trail to all regions, Click Yes and Click Save. - 6. Click the edit icon (pencil) next to Management Events click All for setting Read/Write Events and Click Save. #### From Command Line: ``` aws cloudtrail create-trail --name <trail_name> --bucket-name <s3_bucket_for_cloudtrail> --is-multi-region-trail aws cloudtrail update-trail --name <trail_name> --is-multi-region-trail ``` Note: Creating CloudTrail via CLI without providing any overriding options configures Management Events to set All type of Read/Writes by default. #### **Default Value:** Not Enabled #### References: - 1. CCE-78913-1 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-concepts.html#cloudtrail-concepts-management-events - 4. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-supported-services.html#cloud-trail-supported-services-data-events | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.5 Collect Detailed Audit Logs Configure detailed audit logging for enterprise assets containing sensitive data. Include event source, date, username, timestamp, source addresses, destination addresses, and other useful elements that could assist in a forensic investigation. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | # 3.2 Ensure CloudTrail log file validation is enabled (Automated) # **Profile Applicability:** • Level 2 ## **Description:** CloudTrail log file validation creates a digitally signed digest file containing a hash of each log that CloudTrail writes to S3. These digest files can be used to determine whether a log file was changed, deleted, or unchanged after CloudTrail delivered the log. It is recommended that file validation be enabled on all CloudTrails. #### Rationale: Enabling log file validation will provide additional integrity checking of CloudTrail logs. #### Audit: Perform the following on each trail to determine if log file validation is enabled: #### From Console: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/cloudtrail - 2. Click on Trails on the left navigation pane - 3. For Every Trail: - Click on a trail via the link in the Name column - Under the General details section, ensure Log file validation is set to Enabled #### From Command Line: aws cloudtrail describe-trails Ensure LogFileValidationEnabled is set to true for each trail #### Remediation: Perform the following to enable log file validation on a given trail: #### From Console: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/cloudtrail - 2. Click on Trails on the left navigation pane - 3. Click on target trail - 4. Within the General details section click edit - 5. Under the Advanced settings section - 6. Check the enable box under Log file validation - 7. Click Save changes #### From Command Line: ``` aws cloudtrail update-trail --name <trail_name> --enable-log-file-validation ``` Note that periodic validation of logs using these digests can be performed by running the following command: ``` aws cloudtrail validate-logs --trail-arn <trail_arn> --start-time <start_time> --end-time <end_time> ``` #### **Default Value:** Not Enabled #### References: - 1. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-validation-enabling.html - 2. CCE-78914-9 | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6 Maintenance, Monitoring and Analysis of Audit Logs Maintenance, Monitoring and Analysis of Audit Logs | | | | # 3.3 Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible (Automated) ## **Profile Applicability:** Level 1 ## **Description:** CloudTrail logs a record of every API call made in your AWS account. These logs file are stored in an S3 bucket. It is recommended that the bucket policy or access control list (ACL) applied to the S3 bucket that CloudTrail logs to prevent public access to the CloudTrail logs. #### Rationale: Allowing public access to CloudTrail log content may aid an adversary in identifying weaknesses in the affected account's use or configuration. #### Audit: Perform the following to determine if any public access is granted to an S3 bucket via an ACL or S3 bucket policy: #### From Console: - 1. Go to the Amazon CloudTrail console at https://console.aws.amazon.com/cloudtrail/home - 2. In the API activity history pane on the left, click Trails - 3. In the Trails pane, note the bucket names in the S3 bucket column - 4. Go to Amazon S3 console at https://console.aws.amazon.com/s3/home - 5. For each bucket noted in step 3, right-click on the bucket and click Properties - 6. In the Properties pane, click the Permissions tab. - 7. The tab shows a list of grants, one row per grant, in the bucket ACL. Each row identifies the grantee and the permissions granted. - 8. Ensure no rows exists that have the Grantee set to Everyone or the Grantee set to Any Authenticated User. - 9. If the Edit bucket policy button is present, click it to review the bucket policy. - 10. Ensure the policy does not contain a Statement having an Effect set to Allow and a Principal set to "*" or {"AWS": "*"} ### From Command Line: 1. Get the name of the S3 bucket that CloudTrail is logging to: aws cloudtrail describe-trails --query 'trailList[*].S3BucketName' 2. Ensure the Allusers principal is not granted privileges to that <bucket>: ``` aws s3api get-bucket-acl --bucket <s3_bucket_for_cloudtrail> --query 'Grants[?Grantee.URI== `https://acs.amazonaws.com/groups/global/AllUsers`]' ``` ``` aws s3api get-bucket-acl --bucket <s3_bucket_for_cloudtrail> --query 'Grants[?Grantee.URI== `https://acs.amazonaws.com/groups/global/Authenticated Users`]' ``` 4. Get the S3 Bucket Policy ``` aws s3api get-bucket-policy --bucket <s3_bucket_for_cloudtrail> ``` 5. Ensure the policy does not contain a Statement having an Effect set to Allow and a Principal set to "*" or {"AWS" : "*"} Note: Principal set to "*" or {"AWS" : "*"} allows anonymous access. #### Remediation: Perform the following to remove any public access that has been granted to the bucket via an ACL or S3 bucket policy: - 1. Go to Amazon S3 console at https://console.aws.amazon.com/s3/home - 2. Right-click on the bucket and click Properties - 3. In the Properties pane, click the Permissions tab. - 4. The tab shows a list of grants, one row per grant, in the bucket ACL. Each row identifies the grantee and the permissions granted. - 5. Select the row that grants permission to Everyone or Any Authenticated User - 6. Uncheck all the permissions granted to Everyone or Any Authenticated User (click x to delete the row). - Click Save to save the ACL. - 8. If the Edit bucket policy button is present, click it. - 9. Remove any Statement having an Effect set to Allow and a Principal set to "*" or {"AWS": "*"}. #### **Default Value:** By default, S3 buckets are not publicly accessible # References: - 1. CCE-78915-6 - 2. https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-policies-elements-principal.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls
will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | # 3.4 Ensure CloudTrail trails are integrated with CloudWatch Logs (Automated) # **Profile Applicability:** Level 1 #### **Description:** AWS CloudTrail is a web service that records AWS API calls made in a given AWS account. The recorded information includes the identity of the API caller, the time of the API call, the source IP address of the API caller, the request parameters, and the response elements returned by the AWS service. CloudTrail uses Amazon S3 for log file storage and delivery, so log files are stored durably. In addition to capturing CloudTrail logs within a specified S3 bucket for long term analysis, realtime analysis can be performed by configuring CloudTrail to send logs to CloudWatch Logs. For a trail that is enabled in all regions in an account, CloudTrail sends log files from all those regions to a CloudWatch Logs log group. It is recommended that CloudTrail logs be sent to CloudWatch Logs. Note: The intent of this recommendation is to ensure AWS account activity is being captured, monitored, and appropriately alarmed on. CloudWatch Logs is a native way to accomplish this using AWS services but does not preclude the use of an alternate solution. #### Rationale: Sending CloudTrail logs to CloudWatch Logs will facilitate real-time and historic activity logging based on user, API, resource, and IP address, and provides opportunity to establish alarms and notifications for anomalous or sensitivity account activity. #### Impact: Note: By default, CloudWatch Logs will store Logs indefinitely unless a specific retention period is defined for the log group. When choosing the number of days to retain, keep in mind the average days it takes an organization to realize they have been breached is 210 days (at the time of this writing). Since additional time is required to research a breach, a minimum 365 day retention policy allows time for detection and research. You may also wish to archive the logs to a cheaper storage service rather than simply deleting them. See the following AWS resource to manage CloudWatch Logs retention periods: 1. https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/SettingLogRetention.html #### Audit: Perform the following to ensure CloudTrail is configured as prescribed: #### From Console: - Login to the CloudTrail console at https://console.aws.amazon.com/cloudtrail/ - 2. Under Trails, click on the CloudTrail you wish to evaluate - 3. Under the CloudWatch Logs section. - 4. Ensure a CloudWatch Logs log group is configured and listed. - 5. Under General details confirm Last log file delivered has a recent (~one day old) timestamp. #### From Command Line: 1. Run the following command to get a listing of existing trails: aws cloudtrail describe-trails - 2. Ensure CloudWatchLogsLogGroupArn is not empty and note the value of the Name property. - 3. Using the noted value of the Name property, run the following command: aws cloudtrail get-trail-status --name <trail name> 4. Ensure the LatestcloudwatchLogdDeliveryTime property is set to a recent (~one day old) timestamp. If the CloudWatch Logs log group is not setup and the delivery time is not recent refer to the remediation below. #### Remediation: Perform the following to establish the prescribed state: #### From Console: - Login to the CloudTrail console at https://console.aws.amazon.com/cloudtrail/ - 2. Select the Trail the needs to be updated. - 3. Scroll down to CloudWatch Logs - 4. Click Edit - 5. Under CloudWatch Logs click the box Enabled - 6. Under Log Group pick new or select an existing log group - 7. Edit the Log group name to match the CloudTrail or pick the existing CloudWatch Group. - 8. Under IAM Role pick new or select an existing. - 9. Edit the Role name to match the CloudTrail or pick the existing IAM Role. 10. Click `Save changes. #### From Command Line: aws cloudtrail update-trail --name <trail_name> --cloudwatch-logs-log-grouparn <cloudtrail_log_group_arn> --cloudwatch-logs-role-arn <cloudtrail_cloudwatchLogs_role_arn> #### References: - 1. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/how-cloudtrail-works.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 8.5 Collect Detailed Audit Logs Configure detailed audit logging for enterprise assets containing sensitive data. Include event source, date, username, timestamp, source addresses, destination addresses, and other useful elements that could assist in a forensic investigation. | | • | • | | v8 | 8.9 Centralize Audit Logs Centralize, to the extent possible, audit log collection and retention across enterprise assets. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 6.5 <u>Central Log Management</u> Ensure that appropriate logs are being aggregated to a central log management system for analysis and review. | | • | • | # 3.5 Ensure AWS Config is enabled in all regions (Automated) # **Profile Applicability:** • Level 2 #### **Description:** AWS Config is a web service that performs configuration management of supported AWS resources within your account and delivers log files to you. The recorded information includes the configuration item (AWS resource), relationships between configuration items (AWS resources), any configuration changes between resources. It is recommended AWS Config be enabled in all regions. #### Rationale: The AWS configuration item history captured by AWS Config enables security analysis, resource change tracking, and compliance auditing. ### Impact: It is recommended AWS Config be enabled in all regions. #### Audit: Process to evaluate AWS Config configuration per region **From Console:** - 1. Sign in to the AWS Management Console and open the AWS Config console at https://console.aws.amazon.com/config/. - 2. On the top right of the console select target Region. - 3. If presented with Setup AWS Config follow remediation procedure: - 4. On the Resource inventory page, Click on edit (the gear icon). The Set Up AWS Config page appears. - 5. Ensure 1 or both check-boxes under "All Resources" is checked. - Include global resources related to IAM resources which needs to be enabled in 1 region only - 6. Ensure the correct S3 bucket has been defined. - 7. Ensure the correct SNS topic has been defined. - 8. Repeat steps 2 to 7 for each region. #### From Command Line: 1. Run this command to show all AWS Config recorders and their properties: ``` aws configservice describe-configuration-recorders ``` 2. Evaluate the output to ensure that there's at least one recorder for which recordingGroup object includes "allSupported": true AND "includeGlobalResourceTypes": true Note: There is one more parameter "ResourceTypes" in recordingGroup object. We don't need to check the same as whenever we set "allSupported": true, AWS enforces resource types to be empty ("ResourceTypes":[]) Sample Output: 3. Run this command to show the status for all AWS Config recorders: ``` aws configservice describe-configuration-recorder-status ``` 4. In the output, find recorders with name key matching the recorders that met criteria in step 2. Ensure that at least one of them includes "recording": true and "lastStatus": "SUCCESS" #### Remediation: To implement AWS Config configuration: #### From Console: - 1. Select the region you want to focus on in the top right of the console - 2. Click Services - 3. Click Config - 4. Define which resources you want to record in the selected region - 5. Choose to include global resources (IAM resources) - 6. Specify an S3 bucket in the same account or in another managed AWS account - 7. Create an SNS Topic from the same AWS account or another managed AWS account #### From Command Line: - 1. Ensure there is an appropriate S3 bucket, SNS topic, and IAM role per the <u>AWS</u> Config Service prerequisites. - 2. Run this command to set up the configuration recorder ``` aws configservice subscribe --s3-bucket my-config-bucket --sns-topic arn:aws:sns:us-east-1:012345678912:my-config-notice --iam-role arn:aws:iam::012345678912:role/myConfigRole ``` 3. Run this command to start the configuration recorder: start-configuration-recorder --configuration-recorder-name <value> #### References: - 1. CCE-78917-2 - 2. https://docs.aws.amazon.com/cli/latest/reference/configservice/describe-configuration-recorder-status.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------
---|------|------|------| | v8 | 1.1 Establish and Maintain Detailed Enterprise Asset Inventory Establish and maintain an accurate, detailed, and up-to-date inventory of all enterprise assets with the potential to store or process data, to include: end-user devices (including portable and mobile), network devices, non-computing/loT devices, and servers. Ensure the inventory records the network address (if static), hardware address, machine name, enterprise asset owner, department for each asset, and whether the asset has been approved to connect to the network. For mobile end-user devices, MDM type tools can support this process, where appropriate. This inventory includes assets connected to the infrastructure physically, virtually, remotely, and those within cloud environments. Additionally, it includes assets that are regularly connected to the enterprise's network infrastructure, even if they are not under control of the enterprise. Review and update the inventory of all enterprise assets bi-annually, or more frequently. | • | • | • | | v7 | 1.4 Maintain Detailed Asset Inventory Maintain an accurate and up-to-date inventory of all technology assets with the potential to store or process information. This inventory shall include all hardware assets, whether connected to the organization's network or not. | • | • | • | | v7 | 11.2 <u>Document Traffic Configuration Rules</u> All configuration rules that allow traffic to flow through network devices should be documented in a configuration management system with a specific business reason for each rule, a specific individual's name responsible for that business need, and an expected duration of the need. | | • | • | | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v7 | 16.1 <u>Maintain an Inventory of Authentication Systems</u> Maintain an inventory of each of the organization's authentication systems, including those located onsite or at a remote service provider. | | • | • | # 3.6 Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket (Automated) # **Profile Applicability:** Level 1 ### **Description:** S3 Bucket Access Logging generates a log that contains access records for each request made to your S3 bucket. An access log record contains details about the request, such as the request type, the resources specified in the request worked, and the time and date the request was processed. It is recommended that bucket access logging be enabled on the CloudTrail S3 bucket. #### Rationale: By enabling S3 bucket logging on target S3 buckets, it is possible to capture all events which may affect objects within any target buckets. Configuring logs to be placed in a separate bucket allows access to log information which can be useful in security and incident response workflows. #### Audit: Perform the following ensure the CloudTrail S3 bucket has access logging is enabled: **From Console:** - 1. Go to the Amazon CloudTrail console at https://console.aws.amazon.com/cloudtrail/home - 2. In the API activity history pane on the left, click Trails - 3. In the Trails pane, note the bucket names in the S3 bucket column - 4. Sign in to the AWS Management Console and open the S3 console at https://console.aws.amazon.com/s3. - 5. Under All Buckets click on a target S3 bucket - 6. Click on Properties in the top right of the console - 7. Under Bucket: _ <bucket name> _ click on Logging - 8. Ensure Enabled is checked. #### From Command Line: 1. Get the name of the S3 bucket that CloudTrail is logging to: aws cloudtrail describe-trails --query 'trailList[*].S3BucketName' Ensure Bucket Logging is enabled: ``` aws s3api get-bucket-logging --bucket <s3 bucket for cloudtrail> ``` Ensure command does not returns empty output. Sample Output for a bucket with logging enabled: ``` "LoggingEnabled": { "TargetPrefix": "<Prefix_Test>", "TargetBucket": "<Bucket_name_for_Storing_Logs>" } } ``` #### Remediation: Perform the following to enable S3 bucket logging: #### From Console: - 1. Sign in to the AWS Management Console and open the S3 console at https://console.aws.amazon.com/s3. - 2. Under All Buckets click on the target S3 bucket - 3. Click on Properties in the top right of the console - 4. Under Bucket: <s3 bucket for cloudtrail> click on Logging - 5. Configure bucket logging - o Click on the Enabled checkbox - Select Target Bucket from list - Enter a Target Prefix - 6. Click save. #### From Command Line: 1. Get the name of the S3 bucket that CloudTrail is logging to: ``` aws cloudtrail describe-trails --region <region-name> --query trailList[*].S3BucketName ``` 2. Copy and add target bucket name at <Logging_BucketName</pre>, Prefix for logfile at <LogFilePrefix</pre> and optionally add an email address in the following template and save it as <fileName.Json</pre>: 3. Run the put-bucket-logging command with bucket name and <FileName.Json> as input, for more information refer at <u>put-bucket-logging</u>: ``` aws s3api put-bucket-logging --bucket <BucketName> --bucket-logging-status file://<FileName.Json> ``` #### **Default Value:** Logging is disabled. #### References: - 1. CCE-78918-0 - 2. https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.14 Log Sensitive Data Access Log sensitive data access, including modification and disposal. | | | • | | v8 | 8.2 Collect Audit Logs Collect audit logs. Ensure that logging, per the enterprise's audit log management process, has been enabled across enterprise assets. | • | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v7 | 14.9 Enforce Detail Logging for Access or Changes to Sensitive Data Enforce detailed audit logging for access to sensitive data or changes to sensitive data (utilizing tools such as File Integrity Monitoring or Security Information and Event Monitoring). | | | • | # 3.7 Ensure CloudTrail logs are encrypted at rest using KMS CMKs (Automated) # **Profile Applicability:** Level 2 #### **Description:** AWS CloudTrail is a web service that records AWS API calls for an account and makes those logs available to users and resources in accordance with IAM policies. AWS Key Management Service (KMS) is a managed service that helps create and control the encryption keys used to encrypt account data, and uses Hardware Security Modules (HSMs) to protect the security of encryption keys. CloudTrail logs can be configured to leverage server side encryption (SSE) and KMS customer created master keys (CMK) to further protect CloudTrail logs. It is recommended that CloudTrail be configured to use SSE-KMS. #### Rationale: Configuring CloudTrail to use SSE-KMS provides additional confidentiality controls on log data as a given user must have S3 read permission on the corresponding log bucket and must be granted decrypt permission by the CMK policy. ## Impact: Customer created keys incur an additional cost. See https://aws.amazon.com/kms/pricing/ for more information. #### Audit: Perform the following to determine if CloudTrail is configured to use SSE-KMS: **From Console:** - 1. Sign in to the AWS Management Console and open the CloudTrail console at https://console.aws.amazon.com/cloudtrail - 2. In the left navigation pane, choose Trails. - Select a Trail - 4. Under the S3 section, ensure Encrypt log files is set to Yes and a KMS key ID is specified in the KSM Key Id field. #### From Command Line: 1. Run the following command: aws cloudtrail describe-trails 2. For each trail listed, SSE-KMS is enabled if the trail has a KmsKeyId property defined. #### Remediation: Perform the following to configure CloudTrail to use SSE-KMS: #### From Console: - 1. Sign in to the AWS Management Console and open the CloudTrail console at https://console.aws.amazon.com/cloudtrail - 2. In the left navigation pane, choose Trails. - 3. Click on a Trail - 4.
Under the s3 section click on the edit button (pencil icon) - 5. Click Advanced - 6. Select an existing CMK from the KMS key Id drop-down menu - Note: Ensure the CMK is located in the same region as the S3 bucket - Note: You will need to apply a KMS Key policy on the selected CMK in order for CloudTrail as a service to encrypt and decrypt log files using the CMK provided. Steps are provided here for editing the selected CMK Key policy - 7. Click save - 8. You will see a notification message stating that you need to have decrypt permissions on the specified KMS key to decrypt log files. - 9. Click Yes #### From Command Line: ``` aws cloudtrail update-trail --name <trail_name> --kms-id <cloudtrail_kms_key> aws kms put-key-policy --key-id <cloudtrail_kms_key> --policy <cloudtrail kms key policy> ``` #### References: - 1. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html - 2. https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html - 3. CCE-78919-8 #### Additional Information: 3 statements which need to be added to the CMK policy: 1. Enable Cloudtrail to describe CMK properties ``` { "Sid": "Allow CloudTrail access", "Effect": "Allow", "Principal": { "Service": "cloudtrail.amazonaws.com" }, "Action": "kms:DescribeKey", "Resource": "*" } ``` #### 2. Granting encrypt permissions ## 3. Granting decrypt permissions ``` { "Sid": "Enable CloudTrail log decrypt permissions", "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::aws-account-id:user/username" }, "Action": "kms:Decrypt", "Resource": "*", "Condition": { "Null": { "kms:EncryptionContext:aws:cloudtrail:arn": "false" } } } ``` | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data. | | • | • | | v7 | 6 Maintenance, Monitoring and Analysis of Audit Logs Maintenance, Monitoring and Analysis of Audit Logs | | | | | v7 | 14.8 Encrypt Sensitive Information at Rest Encrypt all sensitive information at rest using a tool that requires a secondary authentication mechanism not integrated into the operating system, in order to access the information. | | | • | # 3.8 Ensure rotation for customer created symmetric CMKs is enabled (Automated) ## **Profile Applicability:** Level 2 #### **Description:** AWS Key Management Service (KMS) allows customers to rotate the backing key which is key material stored within the KMS which is tied to the key ID of the Customer Created customer master key (CMK). It is the backing key that is used to perform cryptographic operations such as encryption and decryption. Automated key rotation currently retains all prior backing keys so that decryption of encrypted data can take place transparently. It is recommended that CMK key rotation be enabled for symmetric keys. Key rotation can not be enabled for any asymmetric CMK. #### Rationale: Rotating encryption keys helps reduce the potential impact of a compromised key as data encrypted with a new key cannot be accessed with a previous key that may have been exposed. Keys should be rotated every year, or upon event that would result in the compromise of that key. #### Impact: Creation, management, and storage of CMKs may require additional time from and administrator. #### Audit: #### From Console: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam. - 2. In the left navigation pane, choose Customer managed keys - 3. Select a customer managed CMK where Key spec = SYMMETRIC DEFAULT - 4. Underneath the General configuration panel open the tab Key rotation - 5. Ensure that the checkbox Automatically rotate this KMS key every year. is activated - Repeat steps 3 5 for all customer managed CMKs where "Key spec = SYMMETRIC DEFAULT" #### From Command Line: Run the following command to get a list of all keys and their associated Keylds aws kms list-keys 2. For each key, note the Keyld and run the following command describe-key --key-id <kms key id> 3. If the response contains "KeySpec = SYMMETRIC_DEFAULT" run the following command aws kms get-key-rotation-status --key-id <kms_key_id> - 4. Ensure KeyRotationEnabled is set to true - 5. Repeat steps 2 4 for all remaining CMKs #### Remediation: #### From Console: - 1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam. - 2. In the left navigation pane, choose Customer managed keys. - 3. Select a customer managed CMK where Key spec = SYMMETRIC DEFAULT - 4. Underneath the "General configuration" panel open the tab "Key rotation" - 5. Check the "Automatically rotate this KMS key every year." checkbox #### From Command Line: 1. Run the following command to enable key rotation: aws kms enable-key-rotation --key-id <kms_key_id> #### References: - 1. https://aws.amazon.com/kms/pricing/ - 2. https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final - 3. CCE-78920-6 | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.11 Encrypt Sensitive Data at Rest Encrypt sensitive data at rest on servers, applications, and databases containing sensitive data. Storage-layer encryption, also known as server-side encryption, meets the minimum requirement of this Safeguard. Additional encryption methods may include application-layer encryption, also known as client-side encryption, where access to the data storage device(s) does not permit access to the plain-text data. | | • | • | | v7 | 6 Maintenance, Monitoring and Analysis of Audit Logs Maintenance, Monitoring and Analysis of Audit Logs | | | | | v7 | 14.8 Encrypt Sensitive Information at Rest Encrypt all sensitive information at rest using a tool that requires a secondary authentication mechanism not integrated into the operating system, in order to access the information. | | | • | # 3.9 Ensure VPC flow logging is enabled in all VPCs (Automated) ### **Profile Applicability:** • Level 2 #### **Description:** VPC Flow Logs is a feature that enables you to capture information about the IP traffic going to and from network interfaces in your VPC. After you've created a flow log, you can view and retrieve its data in Amazon CloudWatch Logs. It is recommended that VPC Flow Logs be enabled for packet "Rejects" for VPCs. #### Rationale: VPC Flow Logs provide visibility into network traffic that traverses the VPC and can be used to detect anomalous traffic or insight during security workflows. #### Impact: By default, CloudWatch Logs will store Logs indefinitely unless a specific retention period is defined for the log group. When choosing the number of days to retain, keep in mind the average days it takes an organization to realize they have been breached is 210 days (at the time of this writing). Since additional time is required to research a breach, a minimum 365 day retention policy allows time for detection and research. You may also wish to archive the logs to a cheaper storage service rather than simply deleting them. See the following AWS resource to manage CloudWatch Logs retention periods: 1. https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/SettingLogRetention.html #### Audit: Perform the following to determine if VPC Flow logs are enabled: #### From Console: - 1. Sign into the management console - 2. Select Services then VPC - 3. In the left navigation pane, select Your VPCs - 4. Select a VPC - 5. In the right pane, select the Flow Logs tab. - 6. Ensure a Log Flow exists that has Active in the Status column. #### From Command Line: 1. Run describe-vpcs command (OSX/Linux/UNIX) to list the VPC networks available in the current AWS region: aws ec2 describe-vpcs --region <region> --query Vpcs[].VpcId - 2. The command output returns the vpcId available in the selected region. - 3. Run describe-flow-logs command (OSX/Linux/UNIX) using the VPC ID to determine if the selected virtual network has the Flow Logs feature enabled: aws ec2 describe-flow-logs --filter "Name=resource-id, Values=<vpc-id>" - 4. If there are no Flow Logs created for the selected VPC, the command output will return an empty list []. - 5. Repeat step 3 for other VPCs available in the same region. - 6. Change the region by updating --region and repeat steps 1 5 for all the VPCs. #### Remediation: Perform the following to determine if VPC Flow logs is
enabled: #### From Console: - 1. Sign into the management console - 2. Select Services then VPC - 3. In the left navigation pane, select your VPCs - 4. Select a VPC - 5. In the right pane, select the Flow Logs tab. - 6. If no Flow Log exists, click Create Flow Log - 7. For Filter, select Reject - 8. Enter in a Role and Destination Log Group - 9. Click Create Log Flow - 10. Click on CloudWatch Logs Group **Note:** Setting the filter to "Reject" will dramatically reduce the logging data accumulation for this recommendation and provide sufficient information for the purposes of breach detection, research and remediation. However, during periods of least privilege security group engineering, setting this the filter to "All" can be very helpful in discovering existing traffic flows required for proper operation of an already running environment. #### From Command Line: 1. Create a policy document and name it as role_policy_document.json and paste the following content: 2. Create another policy document and name it as <code>iam_policy.json</code> and paste the following content: 3. Run the below command to create an IAM role: ``` aws iam create-role --role-name <aws_support_iam_role> --assume-role-policy- document file://<file-path>role_policy_document.json ``` 4. Run the below command to create an IAM policy: ``` aws iam create-policy --policy-name <ami-policy-name> --policy-document file://<file-path>iam-policy.json ``` 5. Run attach-group-policy command using the IAM policy ARN returned at the previous step to attach the policy to the IAM role (if the command succeeds, no output is returned): aws iam attach-group-policy --policy-arn arn:aws:iam::<aws-accountid>:policy/<iam-policy-name> --group-name <group-name> 6. Run describe-vpcs to get the Vpcld available in the selected region: aws ec2 describe-vpcs --region <region> - 7. The command output should return the VPC Id available in the selected region. - 8. Run create-flow-logs to create a flow log for the vpc: aws ec2 create-flow-logs --resource-type VPC --resource-ids <vpc-id> -traffic-type REJECT --log-group-name <log-group-name> --deliver-logspermission-arn <iam-role-arn> - 9. Repeat step 8 for other vpcs available in the selected region. - 10. Change the region by updating --region and repeat remediation procedure for other vpcs. #### References: - 1. CCE-79202-8 - 2. https://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 8.2 Collect Audit Logs Collect audit logs. Ensure that logging, per the enterprise's audit log management process, has been enabled across enterprise assets. | • | • | • | | v8 | 13.6 Collect Network Traffic Flow Logs Collect network traffic flow logs and/or network traffic to review and alert upon from network devices. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 12.5 Configure Monitoring Systems to Record Network Packets Configure monitoring systems to record network packets passing through the boundary at each of the organization's network boundaries. | | • | • | # 3.10 Ensure that Object-level logging for write events is enabled for S3 bucket (Automated) # **Profile Applicability:** Level 2 #### **Description:** S3 object-level API operations such as GetObject, DeleteObject, and PutObject are called data events. By default, CloudTrail trails don't log data events and so it is recommended to enable Object-level logging for S3 buckets. #### Rationale: Enabling object-level logging will help you meet data compliance requirements within your organization, perform comprehensive security analysis, monitor specific patterns of user behavior in your AWS account or take immediate actions on any object-level API activity within your S3 Buckets using Amazon CloudWatch Events. #### Audit: #### From Console: - 1. Login to the AWS Management Console and navigate to CloudTrail dashboard at https://console.aws.amazon.com/cloudtrail/ - 2. In the left panel, click Trails and then click on the CloudTrail Name that you want to examine. - 3. Review General details - 4. Confirm that Multi-region trail is set to Yes - 5. Scroll down to Data events - 6. Confirm that it reads: Data events: S3 Bucket Name: All current and future S3 buckets Read: Enabled Write: Enabled 7. Repeat steps 2 to 6 to verify that Multi-region trail and Data events logging of S3 buckets in CloudTrail. If the CloudTrails do not have multi-region and data events configured for S3 refer to the remediation below. #### From Command Line: 1. Run list-trails command to list the names of all Amazon CloudTrail trails currently available in all AWS regions: 2. The command output will be a list of all the trail names to include. ``` "TrailARN": "arn:aws:cloudtrail::<account#>:trail/", "Name": "", "HomeRegion": "" ``` 3. Next run 'get-trail- command to determine Multi-region. ``` aws cloudtrail get-trail --name <trailname> --region <region name> ``` - 4. The command output should include: - "IsMultiRegionTrail": true, - 5. Next run get-event-selectors command using the Name of the trail and the region returned in step 2 to determine if Data events logging feature is enabled within the selected CloudTrail trail for all S3 buckets: ``` aws cloudtrail get-event-selectors --region <HomeRegion> --trail-name <trailname> --query EventSelectors[*].DataResources[] ``` 6. The command output should be an array that contains the configuration of the AWS resource(S3 bucket) defined for the Data events selector. ``` "Type": "AWS::S3::Object", "Values": ["arn:aws:s3" ``` - 7. If the get-event-selectors command returns an empty array '[]', the Data events are not included in the selected AWS Cloudtrail trail logging configuration, therefore the S3 object-level API operations performed within your AWS account are not recorded. - 8. Repeat steps 1 to 5 for auditing each CloudTrail to determine if Data events for S3 are covered. - If Multi-region is not set to true and the Data events does not show S3 defined as shown refer to the remediation procedure below. #### Remediation: #### From Console: - 1. Login to the AWS Management Console and navigate to S3 dashboard at https://console.aws.amazon.com/s3/ - 2. In the left navigation panel, click buckets and then click on the S3 Bucket Name that you want to examine. - 3. Click Properties tab to see in detail bucket configuration. - 4. Click on the Object-level logging setting, enter the CloudTrail name for the recording activity. You can choose an existing Cloudtrail or create a new one by navigating to the Cloudtrail console link https://console.aws.amazon.com/cloudtrail/ - 5. Once the Cloudtrail is selected, check the Write event checkbox, so that object-level logging for Write events is enabled. - 6. Repeat steps 2 to 5 to enable object-level logging of write events for other S3 buckets. #### From Command Line: 1. To enable <code>object-level</code> data events logging for S3 buckets within your AWS account, run <code>put-event-selectors</code> command using the name of the trail that you want to reconfigure as identifier: - 2. The command output will be object-level event trail configuration. - 3. If you want to enable it for all buckets at once then change Values parameter to ["arn:aws:s3"] in command given above. - 4. Repeat step 1 for each s3 bucket to update object-level logging of write events. - 5. Change the AWS region by updating the --region command parameter and perform the process for other regions. #### References: 1. https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 8.5 Collect Detailed Audit Logs Configure detailed audit logging for enterprise assets containing sensitive data. Include event source, date, username, timestamp, source addresses, destination addresses, and other useful elements that could assist in a forensic investigation. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 6.3 Enable Detailed Logging Enable system logging to include detailed information such as an event source, date, user, timestamp, source addresses, destination addresses, and other useful elements. | | • | • | # 3.11 Ensure that Object-level logging for read events is enabled for S3 bucket (Automated) # **Profile Applicability:** Level 2 #### **Description:** S3 object-level API operations such as GetObject, DeleteObject, and PutObject are called data events. By default, CloudTrail trails don't log data events and so it is recommended to enable Object-level logging for S3 buckets. #### Rationale: Enabling object-level logging will help you meet data compliance requirements within your organization, perform comprehensive security analysis, monitor specific patterns of user behavior in your AWS account or take immediate actions on any object-level API activity using Amazon CloudWatch Events. #### Audit: #### From Console: - 1. Login to the AWS Management Console and navigate to S3 dashboard at https://console.aws.amazon.com/s3/ - 2. In the left navigation panel, click buckets and then click on the S3 Bucket Name that you want to examine. - 3. Click Properties tab to see in detail bucket configuration. - 4. If the current status for Object-level logging is set to Disabled, then object-level logging of read events for the selected s3 bucket is not set. - 5. If the current status for <code>Object-level</code> logging is set to <code>Enabled</code>, but the Read event check-box is unchecked, then object-level logging of read events for the selected s3 bucket is not set. - 6. Repeat steps 2 to 5 to verify object-level logging for read events of your other S3 buckets. #### From Command Line: 1. Run describe-trails command to list the names of all Amazon CloudTrail trails currently available in the selected AWS region: aws cloudtrail describe-trails --region <region-name> --output table --query trailList[*].Name - 2. The command output will be table of the requested trail names. - 3. Run get-event-selectors command using the name of the trail returned at the previous step and custom query filters to determine if Data events logging feature is enabled within the selected CloudTrail trail configuration for s3 bucket resources: ``` aws cloudtrail get-event-selectors --region <region-name> --trail-name <trail-name> --query EventSelectors[*].DataResources[] ``` - 4. The command output should be an array that contains the configuration of the AWS resource(S3 bucket) defined for the Data events selector. - 5. If the get-event-selectors command returns an empty array, the Data events are not included into the selected AWS Cloudtrail trail logging configuration, therefore the S3 object-level API operations performed within your AWS account are not recorded. - 6. Repeat steps 1 to 5 for auditing each s3 bucket to identify other trails that are missing the capability to log Data events. - 7. Change the AWS region by updating the --region command parameter and perform the audit process for other regions. ## Remediation: ## From Console: - 1. Login to the AWS Management Console and navigate to S3 dashboard at https://console.aws.amazon.com/s3/ - 2. In the left navigation panel, click <code>buckets</code> and then click on the S3 Bucket Name that you want to examine. - 3. Click Properties tab to see in detail bucket configuration. - 4. Click on the <code>object-level</code> logging setting, enter the CloudTrail name for the recording activity. You can choose an existing Cloudtrail or create a new one by navigating to the Cloudtrail console link <code>https://console.aws.amazon.com/cloudtrail/</code> - 5. Once the Cloudtrail is selected, check the Read event checkbox, so that object-level logging for Read events is enabled. - 6. Repeat steps 2 to 5 to enable <code>object-level</code> logging of read events for other S3 buckets. ## From Command Line: 1. To enable <code>object-level</code> data events logging for S3 buckets within your AWS account, run <code>put-event-selectors</code> command using the name of the trail that you want to reconfigure as identifier: - 2. The command output will be object-level event trail configuration. - 3. If you want to enable it for all buckets at ones then change Values parameter to ["arn:aws:s3"] in command given above. - 4. Repeat step 1 for each s3 bucket to update <code>object-level</code> logging of read events. - 5. Change the AWS region by updating the --region command parameter and perform the process for other regions. ## References: 1. https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-cloudtrail-events.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 8.5 Collect Detailed Audit Logs Configure detailed audit logging for enterprise assets containing sensitive data. Include event source, date, username, timestamp, source addresses, destination addresses, and other useful elements that could assist in a forensic investigation. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 6.3 Enable Detailed Logging Enable system logging to include detailed information such as an event source, date, user, timestamp, source addresses, destination addresses, and other useful elements. | | • | • | # 4 Monitoring This section contains recommendations for configuring AWS to assist with monitoring and responding to account activities. Metric filter-related recommendations in this section are dependent on the Ensure CloudTrail is enabled in all regions and Ensure CloudTrail trails are integrated with CloudWatch Logs recommendation in the "Logging" section. # 4.1 Ensure a log metric filter and alarm exist for unauthorized API calls (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for unauthorized API calls. #### Rationale: Monitoring unauthorized API calls will help reveal application errors and may reduce time to detect malicious activity. ## Impact: This alert may be triggered by normal read-only console activities that attempt to opportunistically gather optional information, but gracefully fail if they don't have permissions. If an excessive number of alerts are being generated then an organization may wish to consider adding read access to the limited IAM user permissions simply to quiet the alerts. In some cases doing this may allow the users to actually view some areas of the system - any additional access given should be reviewed for alignment with the original limited IAM user intent. ### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From value associated with "Name":note<cloudtrail name>` - From value associated with "CloudWatchLogsLogGroupArn" note <cloudtrail_log_group_name> Example: for CloudWatchLogsLogGroupArn that looks like arn:aws:logs::<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <"Name" as shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail_log_group_name> that you captured in step 1: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.errorCode = *UnauthorizedOperation) || ($.errorCode = AccessDenied*) || ($.sourceIPAddress!=delivery.logs.amazonaws.com) || ($.eventName!=HeadBucket) }", ``` - 4. Note the "filterName" <unauthorized_api_calls_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <unauthorized api calls metric> captured in step 4. ``` aws cloudwatch describe-alarms --query "MetricAlarms[?MetricName == `unauthorized_api_calls_metric`]" ``` - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for unauthorized API calls and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name "cloudtrail_log_group_name" -- filter-name "<unauthorized_api_calls_metric>" --metric-transformations metricName=unauthorized_api_calls_metric,metricNamespace=CISBenchmark,metricV alue=1 --filter-pattern "{ ($.errorCode = "*UnauthorizedOperation") || ($.errorCode = "AccessDenied*") || ($.sourceIPAddress!="delivery.logs.amazonaws.com") || ($.eventName!="HeadBucket") }" ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Note: Capture the TopicArn displayed when creating the SNS Topic in Step 2. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn from step 2> --protocol cprotocol_for_sns> --notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription
for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name "unauthorized_api_calls_alarm" --metric-name "unauthorized_api_calls_metric" --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold -- evaluation-periods 1 --namespace "CISBenchmark" --alarm-actions <sns_topic_arn> ``` #### References: - 1. https://aws.amazon.com/sns/ - 2. CCE-79186-3 - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 4. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 5. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored ensures that activities on all supported global services are monitored ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6.5 <u>Central Log Management</u> Ensure that appropriate logs are being aggregated to a central log management system for analysis and review. | | • | • | | v7 | 6.7 Regularly Review Logs On a regular basis, review logs to identify anomalies or abnormal events. | | • | • | # 4.2 Ensure a log metric filter and alarm exist for Management Console sign-in without MFA (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for console logins that are not protected by multi-factor authentication (MFA). ### Rationale: Monitoring for single-factor console logins will increase visibility into accounts that are not protected by MFA. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: ### aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail log group name> ### Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active ``` aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ``` Ensure in the output that Islogging is set to TRUE Ensure identified Multi-region 'Cloudtrail' captures all Management Events ``` aws cloudtrail get-event-selectors --trail-name <trailname shown in describe- trails> ``` ## Ensure in the output there is at least one Event Selector for a Trail with IncludeManagementEvents **Set** to true and ReadWriteType **Set** to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = "ConsoleLogin") && ($.additionalEventData.MFAUsed != "Yes") }" ``` Or (To reduce false positives incase Single Sign-On (SSO) is used in organization): ``` "filterPattern": "{ ($.eventName = "ConsoleLogin") && ($.additionalEventData.MFAUsed != "Yes") && ($.userIdentity.type = "IAMUser") && ($.responseElements.ConsoleLogin = "Success") }" ``` - 4. Note the <no_mfa_console_signin_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <no mfa console signin metric> captured in step 4. - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` ### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: Create a metric filter based on filter pattern provided which checks for AWS Management Console sign-in without MFA and the <cloudtrail log group name> taken from audit step 1. ## Use Command: ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<no_mfa_console_signin_metric>` --metric-transformations metricName= `<no_mfa_console_signin_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventName = "ConsoleLogin") && ($.additionalEventData.MFAUsed != "Yes") }' ``` Or (To reduce false positives incase Single Sign-On (SSO) is used in organization): ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<no_mfa_console_signin_metric>` --metric-transformations metricName= `<no_mfa_console_signin_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventName = "ConsoleLogin") && ($.additionalEventData.MFAUsed != "Yes") && ($.userIdentity.type = "IAMUser") && ($.responseElements.ConsoleLogin = "Success") }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns subscription endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<no_mfa_console_signin_alarm>` --metric-name `<no_mfa_console_signin_metric>` --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold -- evaluation-periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/viewingmetrics with cloudwatch.html - 2. CCF-79187-1 - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 4. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 5. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored -Filter pattern set to { (\$.eventName = "ConsoleLogin") && (\$.additionalEventData.MFAUsed != "Yes") && (\$.userIdentity.type = "IAMUser") && (\$.responseElements.ConsoleLogin = "Success") reduces false alarms raised when user logs in via SSO account. | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 4.3 Ensure a log metric filter and alarm exist for usage of 'root' account (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for 'root' login attempts. #### Rationale: Monitoring for 'root' account logins will provide visibility into the use of a fully privileged account and an opportunity to reduce the
use of it. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail_log_group_name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ $.userIdentity.type = "Root" && $.userIdentity.invokedBy NOT EXISTS && $.eventType != "AwsServiceEvent" }" ``` - 4. Note the <root_usage_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <root_usage_metric> captured in step 4. - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for 'Root' account usage and the <cloudtrail log group name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name `<cloudtrail_log_group_name>` -- filter-name `<root_usage_metric>` --metric-transformations metricName= `<root_usage_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter- pattern '{ $.userIdentity.type = "Root" && $.userIdentity.invokedBy NOT EXISTS && $.eventType != "AwsServiceEvent" }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns topic name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<root_usage_alarm>` --metric- name `<root_usage_metric>` --statistic Sum --period 300 --threshold 1 -- comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 -- namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. CCE-79188-9 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** ## Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v7 | 4.9 Log and Alert on Unsuccessful Administrative Account Login Configure systems to issue a log entry and alert on unsuccessful logins to an administrative account. | | • | • | # 4.4 Ensure a log metric filter and alarm exist for IAM policy changes (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established changes made to Identity and Access Management (IAM) policies. ### Rationale: Monitoring changes to IAM policies will help ensure authentication and authorization controls remain intact. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail log group name> ### Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: - 4. Note the <iam_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <iam_changes_metric> captured in step 4. ``` aws cloudwatch describe-alarms --query 'MetricAlarms[?MetricName== `<iam_changes_metric>`]' ``` - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` ## Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for IAM policy changes and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name `<cloudtrail_log_group_name>` -- filter-name `<iam_changes_metric>` --metric-transformations metricName= `<iam_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 -- filter-pattern '{($.eventName=DeleteGroupPolicy)||($.eventName=DeleteRolePolicy)||($.eventName=PutRolePolicy)||($.eventName=PutRolePolicy)||($.eventName=PutRolePolicy)||($.eventName=PutUserPolicy)||($.eventName=CreatePolicy)||($.eventName=DeletePolicyVersion)||($.eventName=DeletePolicyVersion)||($.eventName=DeletePolicyVersion)||($.eventName=AttachRolePolicy)||($.eventName=DetachRolePolicy)||($.eventName=AttachGroupPolicy)||($.eventName=AttachGroupPolicy)||($.eventName=AttachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=AttachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=AttachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=AttachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=AttachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)|
($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)||($.eventName=DetachGroupPolicy)|||($.ev ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<iam_changes_alarm>` -- metric-name `<iam_changes_metric>` --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. CCE-79189-7 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 4.5 Ensure a log metric filter and alarm exist for CloudTrail configuration changes (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for detecting changes to CloudTrail's configurations. ### Rationale: Monitoring changes to CloudTrail's configuration will help ensure sustained visibility to activities performed in the AWS account. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describe- Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = CreateTrail) || ($.eventName = UpdateTrail) || ($.eventName = DeleteTrail) || ($.eventName = StartLogging) || ($.eventName = StopLogging) }" ``` - 4. Note the <cloudtrail_cfg_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <cloudtrail cfg changes metric> captured in step 4. - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for cloudtrail configuration changes and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<cloudtrail_cfg_changes_metric>` --metric-transformations metricName= `<cloudtrail_cfg_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventName = CreateTrail) || ($.eventName = UpdateTrail) || ($.eventName = DeleteTrail) || ($.eventName = StartLogging) || ($.eventName = StopLogging) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 #### References: - 1. CCE-79190-5 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html #### **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6 Maintenance, Monitoring and Analysis of Audit Logs Maintenance, Monitoring and Analysis of Audit Logs | | | | # 4.6 Ensure a log metric filter and alarm exist for AWS Management Console authentication failures (Automated) ## **Profile Applicability:** Level 2 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for failed console authentication attempts. #### Rationale: Monitoring failed console logins may decrease lead time to detect an attempt to brute force a credential, which may provide an indicator, such as source IP, that can be used in other event correlation. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From
value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> Would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = ConsoleLogin) && ($.errorMessage = "Failed authentication") }" ``` - 4. Note the <console_signin_failure_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <console_signin_failure_metric> captured in step 4. - 6. Note the Alarmactions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for AWS management Console Login Failures and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<console_signin_failure_metric>` --metric-transformations metricName= `<console_signin_failure_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventName = ConsoleLogin) && ($.errorMessage = "Failed authentication") }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<console_signin_failure_alarm>` --metric-name `<console_signin_failure_metric>` --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 -- namespace 'CISBenchmark' --alarm-actions <sns topic arn> ``` #### References: - 1. CCE-79191-3 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html #### **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 4.7 Ensure a log metric filter and alarm exist for disabling or scheduled deletion of customer created CMKs (Automated) ## **Profile Applicability:** Level 2 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for customer created CMKs which have changed state to disabled or scheduled deletion. #### Rationale: Data encrypted with disabled or deleted keys will no longer be accessible. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{($.eventSource = kms.amazonaws.com) && (($.eventName=DisableKey)||($.eventName=ScheduleKeyDeletion)) }" ``` - 4. Note the <disable_or_delete_cmk_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <disable_or_delete_cmk_changes_metric> captured in step 4. ``` aws cloudwatch describe-alarms --query 'MetricAlarms[?MetricName== `<disable_or_delete_cmk_changes_metric>`]' ``` - 6. Note the Alarmactions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for disabled or scheduled for deletion CMK's and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<disable_or_delete_cmk_changes_metric>` --metric- transformations metricName= `<disable_or_delete_cmk_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{($.eventSource = kms.amazonaws.com) && (($.eventName=DisableKey)||($.eventName=ScheduleKeyDeletion)) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<disable_or_delete_cmk_changes_alarm>` --metric-name `<disable_or_delete_cmk_changes_metric>` --statistic Sum --period 300 -- threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation- periods 1 --namespace 'CISBenchmark' --alarm-actions <sns topic arn> ``` #### References: - 1. CCE-79192-1 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 4.
https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html #### **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 16 Account Monitoring and Control Account Monitoring and Control | | | | # 4.8 Ensure a log metric filter and alarm exist for S3 bucket policy changes (Automated) ## **Profile Applicability:** Level 1 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for changes to S3 bucket policies. ### Rationale: Monitoring changes to S3 bucket policies may reduce time to detect and correct permissive policies on sensitive S3 buckets. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventSource = s3.amazonaws.com) && (($.eventName = PutBucketAcl) || ($.eventName = PutBucketPolicy) || ($.eventName = PutBucketCors) || ($.eventName = PutBucketLifecycle) || ($.eventName = PutBucketReplication) || ($.eventName = DeleteBucketPolicy) || ($.eventName = DeleteBucketCors) || ($.eventName = DeleteBucketLifecycle) || ($.eventName = DeleteBucketReplication)) }" ``` - 4. Note the <s3_bucket_policy_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <s3 bucket policy changes metric> captured in step 4. ``` aws cloudwatch describe-alarms --query 'MetricAlarms[?MetricName== `<s3_bucket_policy_changes_metric>`]' ``` - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` ### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for S3 bucket policy changes and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<s3_bucket_policy_changes_metric>` --metric-transformations metricName= `<s3_bucket_policy_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventSource = s3.amazonaws.com) && (($.eventName = PutBucketAcl) || ($.eventName = PutBucketPolicy) || ($.eventName = PutBucketCors) || ($.eventName = PutBucketLifecycle) || ($.eventName = PutBucketReplication) || ($.eventName = DeleteBucketPolicy) || ($.eventName = DeleteBucketCors) || ($.eventName = DeleteBucketLifecycle) || ($.eventName = DeleteBucketCors) || ($.eventName = DeleteBucketLifecycle) || ($.eventName = DeleteBucketReplication)) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<s3_bucket_policy_changes_alarm>` --metric-name `<s3_bucket_policy_changes_metric>` --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` ## References: - 1. CCE-79193-9 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ### **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored ensures that activities on all supported global services are monitored ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 14 Controlled Access Based on the Need to Know Controlled Access Based on the Need to Know | | | | # 4.9 Ensure a log metric filter and alarm exist for AWS Config configuration changes (Automated) ## **Profile Applicability:** Level 2 ## **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for detecting changes to CloudTrail's configurations. ### Rationale: Monitoring changes to AWS Config configuration will help ensure sustained visibility of configuration items within the AWS account. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describe- Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventSource = config.amazonaws.com) && (($.eventName=StopConfigurationRecorder)||($.eventName=DeleteDeliveryChannel) ||($.eventName=PutDeliveryChannel)||($.eventName=PutConfigurationRecorder)) }" ``` - 4. Note the <aws_config_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch
alarms and filter on the <aws_config_changes_metric> captured in step 4. - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for AWS Configuration changes and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<aws_config_changes_metric>` --metric-transformations metricName= `<aws_config_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventSource = config.amazonaws.com) && (($.eventName=StopConfigurationRecorder)||($.eventName=DeleteDeliveryChannel) ||($.eventName=PutDeliveryChannel)||($.eventName=PutConfigurationRecorder)) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns topic name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<aws_config_changes_alarm>` --metric-name `<aws_config_changes_metric>` --statistic Sum --period 300 -- threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. CCE-79194-7 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v7 | 1.4 <u>Maintain Detailed Asset Inventory</u> Maintain an accurate and up-to-date inventory of all technology assets with the potential to store or process information. This inventory shall include all hardware assets, whether connected to the organization's network or not. | • | • | • | | v7 | 11.2 <u>Document Traffic Configuration Rules</u> All configuration rules that allow traffic to flow through network devices should be documented in a configuration management system with a specific business reason for each rule, a specific individual's name responsible for that business need, and an expected duration of the need. | | • | • | | v7 | 16.1 Maintain an Inventory of Authentication Systems Maintain an inventory of each of the organization's authentication systems, including those located onsite or at a remote service provider. | | • | • | # 4.10 Ensure a log metric filter and alarm exist for security group changes (Automated) # **Profile Applicability:** Level 2 # **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. Security Groups are a stateful packet filter that controls ingress and egress traffic within a VPC. It is recommended that a metric filter and alarm be established for detecting changes to Security Groups. #### Rationale: Monitoring changes to security group will help ensure that resources and services are not unintentionally exposed. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true # Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> Would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = AuthorizeSecurityGroupIngress) || ($.eventName = AuthorizeSecurityGroupEgress) || ($.eventName = RevokeSecurityGroupIngress) || ($.eventName = RevokeSecurityGroupEgress) || ($.eventName = CreateSecurityGroup) || ($.eventName = DeleteSecurityGroup) }" ``` - 4. Note the <security_group_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <security group changes metric> captured in step 4. ``` aws cloudwatch describe-alarms --query "MetricAlarms[?MetricName== '<security_group_changes_metric>']" ``` - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for security groups changes and the <cloudtrail log group name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name "<cloudtrail_log_group_name>" -- filter-name "<security_group_changes_metric>" --metric-transformations metricName= "<security_group_changes_metric>" ,metricNamespace="CISBenchmark",metricValue=1 --filter-pattern "{ ($.eventName = AuthorizeSecurityGroupIngress) || ($.eventName = AuthorizeSecurityGroupEgress) || ($.eventName = RevokeSecurityGroupIngress) || ($.eventName = RevokeSecurityGroupEgress) || ($.eventName = CreateSecurityGroup) || ($.eventName = DeleteSecurityGroup) }" ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name "<sns topic name>" ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn "<sns_topic_arn>" --protocol <protocol_for_sns> --notification-endpoint "<sns_subscription_endpoints>" ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name "<security_group_changes_alarm>" --metric-name "<security_group_changes_metric>" --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 -- namespace "CISBenchmark" --alarm-actions "<sns_topic_arn>" ``` #### References: - 1. CCE-79195-4 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html #### **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | # 4.11 Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) (Automated) # **Profile Applicability:** Level 2 # **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. NACLs are used as a stateless packet filter to control ingress and egress traffic for subnets within a VPC. It is recommended that a metric filter and alarm be established for changes made to NACLs. #### Rationale: Monitoring changes to NACLs will help ensure that AWS resources and services are not unintentionally exposed. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> # Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> Would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = CreateNetworkAcl) || ($.eventName = CreateNetworkAclEntry) || ($.eventName = DeleteNetworkAcl) || ($.eventName = DeleteNetworkAclEntry) || ($.eventName = ReplaceNetworkAclEntry) || ($.eventName = ReplaceNetworkAclAssociation) }" ``` - 4. Note the <nacl_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <nacl_changes_metric> captured in step 4. ``` aws cloudwatch describe-alarms --query 'MetricAlarms[?MetricName== `<nacl_changes_metric>`]' ``` - 6. Note the Alarmactions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for NACL changes and the <cloudtrail log group name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<nacl_changes_metric>` --metric-transformations metricName= `<nacl_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 -- filter-pattern '{ ($.eventName = CreateNetworkAcl) || ($.eventName = CreateNetworkAclEntry) || ($.eventName = DeleteNetworkAcl) || ($.eventName = DeleteNetworkAclEntry) || ($.eventName = ReplaceNetworkAclEntry) || ($.eventName = ReplaceNetworkAclAssociation) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns topic name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<nacl_changes_alarm>` -- metric-name `<nacl_changes_metric>` --statistic Sum --period 300 -- threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation- periods 1 --namespace 'CISBenchmark' --alarm-actions <sns topic arn> ``` #### References: - 1. CCE-79196-2 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v7 | 11.3 <u>Use Automated Tools to Verify Standard Device</u> Configurations and Detect Changes Compare all network device configuration against approved security configurations defined for each network device in use and alert when any deviations are discovered. | | • | • | # 4.12 Ensure a log metric filter and alarm exist for changes to network gateways (Automated) # **Profile Applicability:** Level 1 # **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. Network gateways are required to send/receive traffic to a destination outside of a VPC. It is recommended that a metric filter and alarm be established for changes to network gateways. #### Rationale: Monitoring changes to network gateways will help ensure that all ingress/egress traffic traverses the VPC border via a controlled path. #### Audit: Perform the following to ensure that there is at least one
active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to true ## Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> Would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = CreateCustomerGateway) || ($.eventName = DeleteCustomerGateway) || ($.eventName = AttachInternetGateway) || ($.eventName = CreateInternetGateway) || ($.eventName = DeleteInternetGateway) || ($.eventName = DetachInternetGateway) }" ``` - 4. Note the <network_gw_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <network_gw_changes_metric> captured in step 4. - 6. Note the Alarmactions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for network gateways changes and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<network_gw_changes_metric>` --metric-transformations metricName= `<network_gw_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventName = CreateCustomerGateway) || ($.eventName = DeleteCustomerGateway) || ($.eventName = AttachInternetGateway) || ($.eventName = CreateInternetGateway) || ($.eventName = DeleteInternetGateway) || ($.eventName = DetachInternetGateway) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns topic name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<network_gw_changes_alarm>` - -metric-name `<network_gw_changes_metric>` --statistic Sum --period 300 -- threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation- periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. CCE-79197-0 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html ## **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 11.3 <u>Use Automated Tools to Verify Standard Device</u> <u>Configurations and Detect Changes</u> Compare all network device configuration against approved security configurations defined for each network device in use and alert when any deviations are discovered. | | • | • | # 4.13 Ensure a log metric filter and alarm exist for route table changes (Automated) # **Profile Applicability:** Level 1 # **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. Routing tables are used to route network traffic between subnets and to network gateways. It is recommended that a metric filter and alarm be established for changes to route tables. #### Rationale: Monitoring changes to route tables will help ensure that all VPC traffic flows through an expected path. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to # Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = CreateRoute) || ($.eventName = CreateRouteTable) || ($.eventName = ReplaceRoute) || ($.eventName = ReplaceRouteTableAssociation) || ($.eventName = DeleteRouteTable) || ($.eventName = DeleteRoute) || ($.eventName = DisassociateRouteTable) }" ``` - 4. Note the <route_table_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <route_table_changes_metric> captured in step 4. ``` aws cloudwatch describe-alarms --query 'MetricAlarms[?MetricName== `<route_table_changes_metric>`]' ``` - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for route table changes and the <cloudtrail_log_group_name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<route_table_changes_metric>` --metric-transformations metricName= `<route_table_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 --filter-pattern '{ ($.eventName = CreateRoute) || ($.eventName = CreateRouteTable) || ($.eventName = ReplaceRoute) || ($.eventName = ReplaceRouteTableAssociation) || ($.eventName = DeleteRouteTable) || ($.eventName = DeleteRoute) || ($.eventName = DisassociateRouteTable) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together.
2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns topic name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<route_table_changes_alarm>` --metric-name `<route_table_changes_metric>` --statistic Sum --period 300 - -threshold 1 --comparison-operator GreaterThanOrEqualToThreshold -- evaluation-periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. CCE-79198-8 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html #### **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|--|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 11.3 <u>Use Automated Tools to Verify Standard Device</u> Configurations and Detect Changes Compare all network device configuration against approved security configurations defined for each network device in use and alert when any deviations are discovered. | | • | • | # 4.14 Ensure a log metric filter and alarm exist for VPC changes (Automated) # **Profile Applicability:** Level 1 # **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs to CloudWatch Logs and establishing corresponding metric filters and alarms. It is possible to have more than 1 VPC within an account, in addition it is also possible to create a peer connection between 2 VPCs enabling network traffic to route between VPCs. It is recommended that a metric filter and alarm be established for changes made to VPCs. #### Rationale: Monitoring changes to VPC will help ensure VPC traffic flow is not getting impacted. #### Audit: Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - 1. Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: aws cloudtrail describe-trails - Identify Multi region Cloudtrails: Trails with "IsMultiRegionTrail" set to - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail_log_group_name> # Example: for CloudWatchLogsLogGroupArn that looks like ``` arn:aws:logs:<region>:<aws_account_number>:log-group:NewGroup:*, <cloudtrail_log_group_name> would be NewGroup ``` Ensure Identified Multi region CloudTrail is active aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> ensure IsLogging is set to TRUE Ensure identified Multi-region Cloudtrail captures all Management Events aws cloudtrail get-event-selectors --trail-name <trailname shown in describetrails> Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventName = CreateVpc) || ($.eventName = DeleteVpc) || ($.eventName = ModifyVpcAttribute) || ($.eventName = AcceptVpcPeeringConnection) || ($.eventName = CreateVpcPeeringConnection) || ($.eventName = DeleteVpcPeeringConnection) || ($.eventName = RejectVpcPeeringConnection) || ($.eventName = AttachClassicLinkVpc) || ($.eventName = DetachClassicLinkVpc) || ($.eventName = DisableVpcClassicLink) || ($.eventName = EnableVpcClassicLink) }" ``` - 4. Note the <vpc_changes_metric> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <vpc_changes_metric> captured in step 4. - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. ``` Example of valid "SubscriptionArn": "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for VPC changes and the <cloudtrail log group name> taken from audit step 1. ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<vpc_changes_metric>` --metric-transformations metricName= `<vpc_changes_metric>` ,metricNamespace='CISBenchmark',metricValue=1 -- filter-pattern '{ ($.eventName = CreateVpc) || ($.eventName = DeleteVpc) || ($.eventName = ModifyVpcAttribute) || ($.eventName = AcceptVpcPeeringConnection) || ($.eventName = CreateVpcPeeringConnection) || ($.eventName = DeleteVpcPeeringConnection) || ($.eventName = RejectVpcPeeringConnection) || ($.eventName = AttachClassicLinkVpc) || ($.eventName = DetachClassicLinkVpc) || ($.eventName = DisableVpcClassicLink) || ($.eventName = EnableVpcClassicLink) }' ``` **Note**: You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify ``` aws sns create-topic --name <sns_topic_name> ``` **Note**: you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2 ``` aws sns subscribe --topic-arn <sns_topic_arn> --protocol protocol_for_sns> - -notification-endpoint <sns_subscription_endpoints> ``` **Note**: you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2 ``` aws cloudwatch put-metric-alarm --alarm-name `<vpc_changes_alarm>` -- metric-name `<vpc_changes_metric>` --statistic Sum --period 300 --threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation-periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` #### References: - 1. CCE-79199-6 - 2. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html - 3. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 4. https://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html # **Additional Information:** Configuring log metric filter and alarm on Multi-region (global) CloudTrail - ensures that activities from all regions (used as well as unused) are monitored - ensures that activities on all supported global services are monitored - ensures that all management events across all regions are monitored | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 5.5 Implement Automated Configuration Monitoring Systems Utilize a Security Content Automation Protocol (SCAP) compliant configuration monitoring system to verify all security configuration elements, catalog approved exceptions, and alert when unauthorized changes occur. | | • | • | # 4.15 Ensure a log metric filter and alarm exists for AWS Organizations changes (Automated) # **Profile Applicability:** Level 1 # **Description:** Real-time monitoring of API calls can be achieved by directing CloudTrail Logs
to CloudWatch Logs and establishing corresponding metric filters and alarms. It is recommended that a metric filter and alarm be established for AWS Organizations changes made in the master AWS Account. #### Rationale: Monitoring AWS Organizations changes can help you prevent any unwanted, accidental or intentional modifications that may lead to unauthorized access or other security breaches. This monitoring technique helps you to ensure that any unexpected changes performed within your AWS Organizations can be investigated and any unwanted changes can be rolled back. #### Audit: - 1. Perform the following to ensure that there is at least one active multi-region CloudTrail with prescribed metric filters and alarms configured: - Identify the log group name configured for use with active multi-region CloudTrail: - List all CloudTrails: #### aws cloudtrail describe-trails - Identify Multi region Cloudtrails, Trails with "IsMultiRegionTrail" set to true - From value associated with CloudWatchLogsLogGroupArn note <cloudtrail log group name> - **Example:** for CloudWatchLogsLogGroupArn that looks like arn:aws:logs::<aws_account_number>:log-group:NewGroup:*, <cloudtrail log group name> would be NewGroup - Ensure Identified Multi region CloudTrail is active: aws cloudtrail get-trail-status --name <Name of a Multi-region CloudTrail> Ensure IsLogging is set to TRUE • Ensure identified Multi-region Cloudtrail captures all Management Events: ``` aws cloudtrail get-event-selectors --trail-name <trailname shown in describe- trails> ``` - Ensure there is at least one Event Selector for a Trail with IncludeManagementEvents set to true and ReadWriteType set to All. - 2. Get a list of all associated metric filters for this <cloudtrail log group name>: ``` aws logs describe-metric-filters --log-group-name "<cloudtrail_log_group_name>" ``` 3. Ensure the output from the above command contains the following: ``` "filterPattern": "{ ($.eventSource = organizations.amazonaws.com) && (($.eventName = "AcceptHandshake") || ($.eventName = "AttachPolicy") || ($.eventName = "CreateAccount") || ($.eventName = "CreateOrganizationalUnit") || ($.eventName = "CreatePolicy") || ($.eventName = "DeclineHandshake") || ($.eventName = "DeleteOrganization") || ($.eventName = "DeleteOrganizationalUnit") || ($.eventName = "DeletePolicy") || ($.eventName = "DetachPolicy") || ($.eventName = "DisablePolicyType") || ($.eventName = "EnablePolicyType") || ($.eventName = "InviteAccountToOrganization") || ($.eventName = "LeaveOrganization") || ($.eventName = "MoveAccount") || ($.eventName = "RemoveAccountFromOrganization") || ($.eventName = "UpdatePolicy") || ($.eventName = "UpdateOrganizationalUnit")) }" ``` - 4. Note the <organizations_changes> value associated with the filterPattern found in step 3. - 5. Get a list of CloudWatch alarms and filter on the <organizations_changes> captured in step 4: ``` aws cloudwatch describe-alarms --query 'MetricAlarms[?MetricName== `<organizations_changes>`]' ``` - 6. Note the AlarmActions value this will provide the SNS topic ARN value. - 7. Ensure there is at least one active subscriber to the SNS topic: ``` aws sns list-subscriptions-by-topic --topic-arn <sns_topic_arn> ``` at least one subscription should have "SubscriptionArn" with valid aws ARN. Example of valid "SubscriptionArn": ``` "arn:aws:sns:<region>:<aws_account_number>:<SnsTopicName>:<SubscriptionID>" ``` #### Remediation: Perform the following to setup the metric filter, alarm, SNS topic, and subscription: 1. Create a metric filter based on filter pattern provided which checks for AWS Organizations changes and the <cloudtrail_log_group_name> taken from audit step 1: ``` aws logs put-metric-filter --log-group-name <cloudtrail_log_group_name> -- filter-name `<organizations_changes>` --metric-transformations metricName= `<organizations_changes>` ,metricNamespace='CISBenchmark',metricValue=1 -- filter-pattern '{ ($.eventSource = organizations.amazonaws.com) && (($.eventName = "AcceptHandshake") || ($.eventName = "AttachPolicy") || ($.eventName = "CreateAccount") || ($.eventName = "CreateOrganizationalUnit") || ($.eventName = "CreatePolicy") || ($.eventName = "DeclineHandshake") || ($.eventName = "DeleteOrganization") || ($.eventName = "DeleteOrganizationalUnit") || ($.eventName = "DeletePolicy") || ($.eventName = "DetachPolicy") || ($.eventName = "DisablePolicyType") || ($.eventName = "EnablePolicyType") || ($.eventName = "InviteAccountToOrganization") || ($.eventName = "LeaveOrganization") || ($.eventName = "MoveAccount") || ($.eventName = "UpdatePolicy") || ($.eventName = "UpdateOrganizationalUnit")) }' ``` **Note:** You can choose your own metricName and metricNamespace strings. Using the same metricNamespace for all Foundations Benchmark metrics will group them together. 2. Create an SNS topic that the alarm will notify: ``` aws sns create-topic --name <sns_topic_name> ``` **Note:** you can execute this command once and then re-use the same topic for all monitoring alarms. 3. Create an SNS subscription to the topic created in step 2: **Note:** you can execute this command once and then re-use the SNS subscription for all monitoring alarms. 4. Create an alarm that is associated with the CloudWatch Logs Metric Filter created in step 1 and an SNS topic created in step 2: ``` aws cloudwatch put-metric-alarm --alarm-name `<organizations_changes>` -- metric-name `<organizations_changes>` --statistic Sum --period 300 -- threshold 1 --comparison-operator GreaterThanOrEqualToThreshold --evaluation- periods 1 --namespace 'CISBenchmark' --alarm-actions <sns_topic_arn> ``` # References: - 1. https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudwatch-alarms-for-cloudtrail.html - 2. https://docs.aws.amazon.com/organizations/latest/userguide/orgs-security-incident-response.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 8.11 Conduct Audit Log Reviews Conduct reviews of audit logs to detect anomalies or abnormal events that could indicate a potential threat. Conduct reviews on a weekly, or more frequent, basis. | | • | • | | v7 | 6.2 Activate audit logging Ensure that local logging has been enabled on all systems and networking devices. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | # 4.16 Ensure AWS Security Hub is enabled (Automated) # **Profile Applicability:** Level 2 # **Description:** Security Hub collects security data from across AWS accounts, services, and supported third-party partner products and helps you analyze your security trends and identify the highest priority security issues. When you enable Security Hub, it begins to consume, aggregate, organize, and prioritize findings from AWS services that you have enabled, such as Amazon GuardDuty, Amazon Inspector, and Amazon Macie. You can also enable integrations with AWS partner security products. #### Rationale: AWS Security Hub provides you with a comprehensive view of your security state in AWS and helps you check your environment against security industry standards and best practices - enabling you to quickly assess the security posture across your AWS accounts. ## Impact: It is recommended AWS Security Hub be enabled in all regions. AWS Security Hub requires AWS Config to be enabled. #### Audit: The process to evaluate AWS Security Hub configuration per region **From Console:** - 1. Sign in to the AWS Management Console and open the AWS Security Hub console at https://console.aws.amazon.com/securityhub/. - 2. On the top right of the console, select the target Region. - 3. If presented with the Security Hub > Summary page then Security Hub is set-up for the selected region. - 4. If presented with Setup Security Hub or Get Started With Security Hub follow the online instructions. - 5. Repeat steps 2 to 4 for each region. #### Remediation: To grant the permissions required to enable Security Hub, attach the Security Hub managed policy AWSSecurityHubFullAccess to an IAM user, group, or role. Enabling Security Hub ## From Console: 1. Use the credentials of the IAM identity to sign in to the Security Hub console. - When you open the Security Hub console for the first time, choose Enable AWS Security Hub. - 3. On the welcome page, Security standards list the security standards that Security Hub supports. - 4. Choose Enable Security Hub. #### From Command Line: 1. Run the enable-security-hub command. To enable the default standards, include --enable-default-standards. aws securityhub enable-security-hub --enable-default-standards 2. To enable the security hub without the default standards, include --no-enable-default-standards. aws securityhub enable-security-hub --no-enable-default-standards #### References: - 1. https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-get-started.html - 2. https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-enable-api - 3. https://awscli.amazonaws.com/v2/documentation/api/latest/reference/securityhub/enable-security-hub.html | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v7 | 11.3 <u>Use Automated Tools to Verify Standard Device</u> <u>Configurations and Detect Changes</u> Compare all network device configuration against approved security configurations defined for each network device in use and alert when any deviations are discovered. | | • | • | # **5 Networking** | This section contains recommendations for configuring security-related aspects of AWS Virtual Private Cloud (VPC). | |--| # 5.1 Ensure no Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports (Automated) # **Profile Applicability:** Level 1 # **Description:** The Network Access Control List (NACL) function provide stateless filtering of ingress and egress network traffic to AWS resources. It is recommended that no NACL allows unrestricted ingress access to remote server administration ports, such as SSH to port 22 and RDP to port 3389. #### Rationale: Public access to remote server administration ports, such as 22 and 3389, increases resource attack surface and unnecessarily raises the risk of resource compromise. #### Audit: #### From Console: Perform the following to determine if the account is configured as prescribed: - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. In the left pane, click Network ACLs - 3. For each network ACL, perform the following: - Select the network ACL - o Click the Inbound Rules tab - Ensure no rule exists that has a port range that includes port 22, 3389, or other remote server administration ports for your environment and has a Source of 0.0.0.0/0 and shows ALLOW **Note:** A Port value of ALL or a port range such as 0-1024 are inclusive of port 22, 3389, and other remote server administration ports #### Remediation: #### From Console: Perform the following: - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. In the left pane, click Network ACLs - 3. For each network ACL to remediate, perform the following: - Select the network ACL - o Click the Inbound Rules tab - o **Click** Edit inbound rules - Either A) update the Source field to a range other than 0.0.0.0/0, or, B) Click Delete to remove the offending inbound rule - o Click save # References: - 1. https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html - 2. https://docs.aws.amazon.com/vpc/latest/userguide/VPC Security.html#VPC Security Comparison | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 13.9 <u>Deploy Port-Level Access Control</u> Deploy port-level access control. Port-level access control utilizes 802.1x, or similar network access control protocols, such as certificates, and may incorporate user and/or device authentication. | | | • | | v7 | 9.2 Ensure Only Approved Ports, Protocols and Services Are Running Ensure that only network ports, protocols, and services listening on a system with validated business needs, are running on each system. | | • | • | | v7 | 12.4 <u>Deny Communication over Unauthorized Ports</u> Deny communication over unauthorized TCP or UDP ports or application traffic to ensure that only authorized protocols are allowed to cross the network boundary in or out of the network at each of the organization's network boundaries. | • | • | • | # 5.2 Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports (Automated) # **Profile Applicability:** Level 1 # **Description:** Security groups provide stateful filtering of ingress and egress network traffic to AWS resources. It is recommended that no security group allows unrestricted ingress access to remote server administration ports, such as SSH to port 22 and RDP to port 3389. #### Rationale: Public access to remote server administration ports, such as 22 and 3389, increases resource attack surface and unnecessarily raises the risk of resource compromise. # Impact: When updating an existing environment, ensure that administrators have access to remote server administration ports through another mechanism before removing access by deleting the 0.0.0.0/0 inbound rule. #### Audit: Perform the following to determine if the account is configured as prescribed: - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. In the left pane, click Security Groups - 3. For each security group, perform the following: - 4. Select the security group - 5. Click the Inbound Rules tab - 6. Ensure no rule exists that has a port range that includes port 22, 3389, or other remote server administration ports for your environment and has a source of 0.0.0.0/0 **Note:** A Port value of ALL or a port range such as 0-1024 are inclusive of port 22, 3389, and other remote server administration ports. #### Remediation: Perform the following to implement the prescribed state: - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. In the left pane, click Security Groups - 3. For each security group, perform the following: - 4. Select the security group - 5. Click the Inbound Rules tab - 6. Click the Edit inbound rules button - 7. Identify the rules to be edited or removed - 8. Either A) update the Source field to a range other than 0.0.0.0/0, or, B) Click Delete to remove the offending inbound rule - 9. Click Save rules ## References: 1. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html#deleting-security-group-rule | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 13.9 <u>Deploy Port-Level Access Control</u> Deploy port-level access control. Port-level access control utilizes 802.1x, or similar network access control protocols, such as certificates, and may incorporate user and/or device authentication. | | | • | | v7 | 9.2 Ensure Only Approved Ports, Protocols and Services Are Running Ensure that only network ports, protocols, and services listening on a system with validated business needs, are running on each system. | | • | • | | v7 | 12.4 <u>Deny Communication over Unauthorized Ports</u> Deny communication over unauthorized TCP or UDP ports or application traffic to ensure that only authorized protocols are allowed to cross the network boundary in or out of the network at each of the organization's network boundaries. | • | • | • | # 5.3 Ensure no security groups allow ingress from ::/0 to remote server administration ports (Automated) # **Profile Applicability:** Level 1 # **Description:** Security groups provide stateful filtering of ingress and egress network traffic to AWS resources. It is recommended that no security group allows unrestricted ingress access to remote server administration ports, such as SSH to port 22 and RDP to port 3389. #### Rationale: Public access to remote server administration ports, such as 22 and 3389, increases resource attack surface and unnecessarily raises the risk of resource compromise. # Impact: When updating an existing environment, ensure that administrators have access to remote server administration ports through another mechanism before removing access by deleting the ::/0 inbound rule. #### Audit: Perform the following to determine if the account is configured as prescribed: - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. In the left pane, click Security Groups - 3. For each security group, perform the following: - 4. Select the security group - 5. Click the Inbound Rules tab - 6. Ensure no rule exists that has a port range that includes port 22, 3389, or other remote server administration ports for your environment and has a source of ::/0 **Note:** A Port value of ALL or a port range such as 0-1024 are inclusive of port 22, 3389, and other remote server administration ports. # Remediation: Perform the following to implement the prescribed state: - Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. In the left pane, click Security Groups - 3. For each security group, perform the following: - 4. Select the security group - 5. Click the Inbound
Rules tab - 6. Click the Edit inbound rules button - 7. Identify the rules to be edited or removed - 8. Either A) update the Source field to a range other than ::/0, or, B) Click Delete to remove the offending inbound rule - 9. Click Save rules ## References: 1. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-group-rule | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 13.9 <u>Deploy Port-Level Access Control</u> Deploy port-level access control. Port-level access control utilizes 802.1x, or similar network access control protocols, such as certificates, and may incorporate user and/or device authentication. | | | • | | v7 | 9.2 Ensure Only Approved Ports, Protocols and Services Are Running Ensure that only network ports, protocols, and services listening on a system with validated business needs, are running on each system. | | • | • | | v7 | 12.4 <u>Deny Communication over Unauthorized Ports</u> Deny communication over unauthorized TCP or UDP ports or application traffic to ensure that only authorized protocols are allowed to cross the network boundary in or out of the network at each of the organization's network boundaries. | • | • | • | ## 5.4 Ensure the default security group of every VPC restricts all traffic (Automated) ### **Profile Applicability:** Level 2 #### **Description:** A VPC comes with a default security group whose initial settings deny all inbound traffic, allow all outbound traffic, and allow all traffic between instances assigned to the security group. If you don't specify a security group when you launch an instance, the instance is automatically assigned to this default security group. Security groups provide stateful filtering of ingress/egress network traffic to AWS resources. It is recommended that the default security group restrict all traffic. The default VPC in every region should have its default security group updated to comply. Any newly created VPCs will automatically contain a default security group that will need remediation to comply with this recommendation. **NOTE:** When implementing this recommendation, VPC flow logging is invaluable in determining the least privilege port access required by systems to work properly because it can log all packet acceptances and rejections occurring under the current security groups. This dramatically reduces the primary barrier to least privilege engineering - discovering the minimum ports required by systems in the environment. Even if the VPC flow logging recommendation in this benchmark is not adopted as a permanent security measure, it should be used during any period of discovery and engineering for least privileged security groups. #### Rationale: Configuring all VPC default security groups to restrict all traffic will encourage least privilege security group development and mindful placement of AWS resources into security groups which will in-turn reduce the exposure of those resources. #### Impact: Implementing this recommendation in an existing VPC containing operating resources requires extremely careful migration planning as the default security groups are likely to be enabling many ports that are unknown. Enabling VPC flow logging (of accepts) in an existing environment that is known to be breach free will reveal the current pattern of ports being used for each instance to communicate successfully. #### Audit: Perform the following to determine if the account is configured as prescribed: Security Group State - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. Repeat the next steps for all VPCs including the default VPC in each AWS region: - 3. In the left pane, click Security Groups - 4. For each default security group, perform the following: - 5. Select the default security group - 6. Click the Inbound Rules tab - 7. Ensure no rule exist - 8. Click the Outbound Rules tab - 9. Ensure no rules exist ### Security Group Members - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - 2. Repeat the next steps for all default groups in all VPCs including the default VPC in each AWS region: - 3. In the left pane, click Security Groups - 4. Copy the id of the default security group. - 5. Change to the EC2 Management Console at https://console.aws.amazon.com/ec2/v2/home - 6. In the filter column type 'Security Group ID : < security group id from #4 >' #### Remediation: Security Group Members Perform the following to implement the prescribed state: - 1. Identify AWS resources that exist within the default security group - 2. Create a set of least privilege security groups for those resources - 3. Place the resources in those security groups - 4. Remove the resources noted in #1 from the default security group #### Security Group State - 1. Login to the AWS Management Console at https://console.aws.amazon.com/vpc/home - Repeat the next steps for all VPCs including the default VPC in each AWS region: - 3. In the left pane, click Security Groups - 4. For each default security group, perform the following: - 5. Select the default security group - 6. Click the Inbound Rules tab - 7. Remove any inbound rules - 8. Click the Outbound Rules tab ### 9. Remove any Outbound rules #### Recommended: IAM groups allow you to edit the "name" field. After remediating default groups rules for all VPCs in all regions, edit this field to add text similar to "DO NOT USE. DO NOT ADD RULES" #### References: - 1. CCE-79201-0 - 2. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html - 3. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html#default-security-group ### **CIS Controls:** | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | ## 5.5 Ensure routing tables for VPC peering are "least access" (Manual) ### **Profile Applicability:** Level 2 ### **Description:** Once a VPC peering connection is established, routing tables must be updated to establish any connections between the peered VPCs. These routes can be as specific as desired - even peering a VPC to only a single host on the other side of the connection. #### Rationale: Being highly selective in peering routing tables is a very effective way of minimizing the impact of breach as resources outside of these routes are inaccessible to the peered VPC. #### Audit: Review routing tables of peered VPCs for whether they route all subnets of each VPC and whether that is necessary to accomplish the intended purposes for peering the VPCs. #### From Command Line: 1. List all the route tables from a VPC and check if "Gatewayld" is pointing to a connection_id> (e.g. pcx-1a2b3c4d) and if "DestinationCidrBlock" is as specific as desired. ``` aws ec2 describe-route-tables --filter "Name=vpc-id, Values=<vpc_id>" --query "RouteTables[*].{RouteTableId:RouteTableId, VpcId:VpcId, Routes:Routes, AssociatedSubnets:Associations[*].SubnetId}" ``` #### Remediation: Remove and add route table entries to ensure that the least number of subnets or hosts as is required to accomplish the purpose for peering are routable. #### From Command Line: 1. For each <route_table_id> containing routes non compliant with your routing policy (which grants more than desired "least access"), delete the non compliant route: aws ec2 delete-route --route-table-id <route_table_id> --destination-cidrblock <non_compliant_destination_CIDR> #### 2. Create a new compliant route: aws ec2 create-route --route-table-id <route_table_id> --destination-cidrblock <compliant_destination_CIDR> --vpc-peering-connection-id <peering connection id> #### References: - 1. https://docs.aws.amazon.com/AmazonVPC/latest/PeeringGuide/peering-configurations-partial-access.html - 2. https://docs.aws.amazon.com/cli/latest/reference/ec2/create-vpc-peering-connection.html #### **Additional Information:** If an
organization has AWS transit gateway implemented in their VPC architecture they should look to apply the recommendation above for "least access" routing architecture at the AWS transit gateway level in combination with what must be implemented at the standard VPC route table. More specifically, to route traffic between two or more VPCs via a transit gateway VPCs must have an attachment to a transit gateway route table as well as a route, therefore to avoid routing traffic between VPCs an attachment to the transit gateway route table should only be added where there is an intention to route traffic between the VPCs. As transit gateways are able to host multiple route tables it is possible to group VPCs by attaching them to a common route table. #### **CIS Controls:** | Controls
Version | Control | IG 1 | IG 2 | IG 3 | |---------------------|---|------|------|------| | v8 | 3.3 Configure Data Access Control Lists Configure data access control lists based on a user's need to know. Apply data access control lists, also known as access permissions, to local and remote file systems, databases, and applications. | • | • | • | | v7 | 14.6 Protect Information through Access Control Lists Protect all information stored on systems with file system, network share, claims, application, or database specific access control lists. These controls will enforce the principle that only authorized individuals should have access to the information based on their need to access the information as a part of their responsibilities. | • | • | • | ### **Appendix: Summary Table** | CIS Benchmark Recommendation | | Set
Correctly | | |------------------------------|--|------------------|----| | | | Yes | No | | 1 | Identity and Access Management | | | | 1.1 | Maintain current contact details (Manual) | | | | 1.2 | Ensure security contact information is registered (Manual) | | | | 1.3 | Ensure security questions are registered in the AWS account (Manual) | | | | 1.4 | Ensure no 'root' user account access key exists (Automated) | | | | 1.5 | Ensure MFA is enabled for the 'root' user account (Automated) | | | | 1.6 | Ensure hardware MFA is enabled for the 'root' user account (Automated) | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks (Automated) | | | | 1.8 | Ensure IAM password policy requires minimum length of 14 or greater (Automated) | | | | 1.9 | Ensure IAM password policy prevents password reuse (Automated) | | | | 1.10 | Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password (Automated) | | | | 1.11 | Do not setup access keys during initial user setup for all IAM users that have a console password (Automated) | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled (Automated) | | | | | CIS Benchmark Recommendation | _ | et
ectly | |-------|---|-----|-------------| | | | Yes | No | | 1.13 | Ensure there is only one active access key available for any single IAM user (Automated) | | | | 1.14 | Ensure access keys are rotated every 90 days or less (Automated) | | | | 1.15 | Ensure IAM Users Receive Permissions Only Through Groups (Automated) | | | | 1.16 | Ensure IAM policies that allow full "*:*" administrative privileges are not attached (Automated) | | | | 1.17 | Ensure a support role has been created to manage incidents with AWS Support (Automated) | | | | 1.18 | Ensure IAM instance roles are used for AWS resource access from instances (Manual) | | | | 1.19 | Ensure that all the expired SSL/TLS certificates stored in AWS IAM are removed (Automated) | | | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions (Automated) | | | | 1.21 | Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments (Manual) | | | | 2 | Storage | | | | 2.1 | Simple Storage Service (S3) | | | | 2.1.1 | Ensure all S3 buckets employ encryption-at-rest (Automated) | | | | 2.1.2 | Ensure S3 Bucket Policy is set to deny HTTP requests (Automated) | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets (Automated) | | | | CIS Benchmark Recommendation | | Set
Correctly | | |------------------------------|--|------------------|----| | | | Yes | No | | 2.1.4 | Ensure all data in Amazon S3 has been discovered, classified and secured when required. (Manual) | | | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' (Automated) | | | | 2.2 | Elastic Compute Cloud (EC2) | | | | 2.2.1 | Ensure EBS Volume Encryption is Enabled in all Regions (Automated) | | | | 2.3 | Relational Database Service (RDS) | | | | 2.3.1 | Ensure that encryption is enabled for RDS Instances (Automated) | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances (Automated) | | | | 2.3.3 | Ensure that public access is not given to RDS Instance (Automated) | | | | 2.4 | Elastic File System (EFS) | | | | 2.4.1 | Ensure that encryption is enabled for EFS file systems (Manual) | | | | 3 | Logging | | | | 3.1 | Ensure CloudTrail is enabled in all regions (Automated) | | | | 3.2 | Ensure CloudTrail log file validation is enabled (Automated) | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible (Automated) | | | | 3.4 | Ensure CloudTrail trails are integrated with CloudWatch Logs (Automated) | | | | 3.5 | Ensure AWS Config is enabled in all regions (Automated) | | | | | CIS Benchmark Recommendation | | et
ectly | |------|---|-----|-------------| | | | Yes | No | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket (Automated) | | | | 3.7 | Ensure CloudTrail logs are encrypted at rest using KMS CMKs (Automated) | | | | 3.8 | Ensure rotation for customer created symmetric CMKs is enabled (Automated) | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs (Automated) | | | | 3.10 | Ensure that Object-level logging for write events is enabled for S3 bucket (Automated) | | | | 3.11 | Ensure that Object-level logging for read events is enabled for S3 bucket (Automated) | | | | 4 | Monitoring | | | | 4.1 | Ensure a log metric filter and alarm exist for unauthorized API calls (Automated) | | | | 4.2 | Ensure a log metric filter and alarm exist for Management Console sign-in without MFA (Automated) | | | | 4.3 | Ensure a log metric filter and alarm exist for usage of 'root' account (Automated) | | | | 4.4 | Ensure a log metric filter and alarm exist for IAM policy changes (Automated) | | | | 4.5 | Ensure a log metric filter and alarm exist for CloudTrail configuration changes (Automated) | | | | 4.6 | Ensure a log metric filter and alarm exist for AWS Management Console authentication failures (Automated) | | | | 4.7 | Ensure a log metric filter and alarm exist for disabling or scheduled deletion of customer created CMKs (Automated) | | | | | CIS Benchmark Recommendation | _ | et
ectly | |------|---|-----|-------------| | | | Yes | No | | 4.8 | Ensure a log metric filter and alarm exist for S3 bucket policy changes (Automated) | | | | 4.9 | Ensure a log metric filter and alarm exist for AWS Config configuration changes (Automated) | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes (Automated) | | | | 4.11 | Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) (Automated) | | | | 4.12 | Ensure a log metric filter and alarm exist for changes to network gateways (Automated) | | | | 4.13 | Ensure a log metric filter and alarm exist for route table changes (Automated) | | | | 4.14 | Ensure a log metric filter and alarm exist for VPC changes (Automated) | | | | 4.15 | Ensure a log metric filter and alarm exists for AWS Organizations changes (Automated) | | | | 4.16 | Ensure AWS Security Hub is enabled (Automated) | | | | 5 | Networking | | | | 5.1 | Ensure no Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports (Automated) | | | | 5.2 | Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports (Automated) | | | | 5.3 | Ensure no security groups allow ingress from ::/0 to remote server administration ports (Automated) | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic (Automated) | | | | 5.5 | Ensure routing tables for VPC peering are "least access" (Manual) | | | # **Appendix: CIS Controls v7 IG 1 Mapped Recommendations** | | Recommendation | Se
Corre | | |-------|---|-------------|----| | | | Yes | No | | 1.1 | Maintain current contact details | | | | 1.4 | Ensure no 'root' user account access key exists | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled | | | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets | | | | 2.1.4 | Ensure all data in Amazon
S3 has been discovered, classified and secured when required. | | | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances | | | | 2.3.3 | Ensure that public access is not given to RDS Instance | | | | 3.1 | Ensure CloudTrail is enabled in all regions | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible | | | | 3.4 | Ensure CloudTrail trails are integrated with CloudWatch Logs | | | | 3.5 | Ensure AWS Config is enabled in all regions | | | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs | | | | 3.10 | Ensure that Object-level logging for write events is enabled for S3 bucket | | | | 3.11 | Ensure that Object-level logging for read events is enabled for S3 bucket | | | | | Recommendation | Se
Corre | | |------|--|-------------|----| | | | Yes | No | | 4.8 | Ensure a log metric filter and alarm exist for S3 bucket policy changes | | | | 4.9 | Ensure a log metric filter and alarm exist for AWS Config configuration changes | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes | | | | 4.12 | Ensure a log metric filter and alarm exist for changes to network gateways | | | | 4.13 | Ensure a log metric filter and alarm exist for route table changes | | | | 4.15 | Ensure a log metric filter and alarm exists for AWS Organizations changes | | | | 5.1 | Ensure no Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports | | | | 5.2 | Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports | | | | 5.3 | Ensure no security groups allow ingress from ::/0 to remote server administration ports | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic | | | | 5.5 | Ensure routing tables for VPC peering are "least access" | | | # **Appendix: CIS Controls v7 IG 2 Mapped Recommendations** | | Recommendation | Se
Corre | | |-------|--|-------------|----| | | | Yes | No | | 1.1 | Maintain current contact details | | | | 1.2 | Ensure security contact information is registered | | | | 1.4 | Ensure no 'root' user account access key exists | | | | 1.5 | Ensure MFA is enabled for the 'root' user account | | | | 1.6 | Ensure hardware MFA is enabled for the 'root' user account | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks | | | | 1.9 | Ensure IAM password policy prevents password reuse | | | | 1.10 | Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled | | | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions | | | | 1.21 | Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments | | | | 2.1.2 | Ensure S3 Bucket Policy is set to deny HTTP requests | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets | | | | 2.1.4 | Ensure all data in Amazon S3 has been discovered, classified and secured when required. | | | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances | | | | 2.3.3 | Ensure that public access is not given to RDS Instance | | | | 3.1 | Ensure CloudTrail is enabled in all regions | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible | | | | | Recommendation | Se
Corre | | |------|---|-------------|----| | | | Yes | No | | 3.4 | Ensure CloudTrail trails are integrated with CloudWatch Logs | | | | 3.5 | Ensure AWS Config is enabled in all regions | | | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs | | | | 3.10 | Ensure that Object-level logging for write events is enabled for S3 bucket | | | | 3.11 | Ensure that Object-level logging for read events is enabled for S3 bucket | | | | 4.1 | Ensure a log metric filter and alarm exist for unauthorized API calls | | | | 4.3 | Ensure a log metric filter and alarm exist for usage of 'root' account | | | | 4.8 | Ensure a log metric filter and alarm exist for S3 bucket policy changes | | | | 4.9 | Ensure a log metric filter and alarm exist for AWS Config configuration changes | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes | | | | 4.11 | Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) | | | | 4.12 | Ensure a log metric filter and alarm exist for changes to network gateways | | | | 4.13 | Ensure a log metric filter and alarm exist for route table changes | | | | 4.14 | Ensure a log metric filter and alarm exist for VPC changes | | | | 4.15 | Ensure a log metric filter and alarm exists for AWS Organizations changes | | | | 4.16 | Ensure AWS Security Hub is enabled | | | | 5.1 | Ensure no Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports | | | | 5.2 | Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports | | | | | Recommendation | | et
ectly | |-----|---|-----|-------------| | | | Yes | No | | 5.3 | Ensure no security groups allow ingress from ::/0 to remote server administration ports | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic | | | | 5.5 | Ensure routing tables for VPC peering are "least access" | | | ## **Appendix: CIS Controls v7 IG 3 Mapped Recommendations** | | Recommendation | Se
Corre | | |-------|--|-------------|----| | | | Yes | No | | 1.1 | Maintain current contact details | | | | 1.2 | Ensure security contact information is registered | | | | 1.4 | Ensure no 'root' user account access key exists | | | | 1.5 | Ensure MFA is enabled for the 'root' user account | | | | 1.6 | Ensure hardware MFA is enabled for the 'root' user account | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks | | | | 1.9 | Ensure IAM password policy prevents password reuse | | | | 1.10 | Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled | | | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions | | | | 1.21 | Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments | | | | 2.1.1 | Ensure all S3 buckets employ encryption-at-rest | | | | 2.1.2 | Ensure S3 Bucket Policy is set to deny HTTP requests | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets | | | | 2.1.4 | Ensure all data in Amazon S3 has been discovered, classified and secured when required. | | | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' | | | | 2.2.1 | Ensure EBS Volume Encryption is Enabled in all Regions | | | | 2.3.1 | Ensure that encryption is enabled for RDS Instances | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances | | | | 2.3.3 | Ensure that public access is not given to RDS Instance | | | | | Recommendation | Se
Corre | | |-------|---|-------------|----| | | | Yes | No | | 2.4.1 | Ensure that encryption is enabled for EFS file systems | | | | 3.1 | Ensure CloudTrail is enabled in all regions | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible | | | | 3.4 | Ensure CloudTrail trails are integrated with CloudWatch Logs | | | | 3.5 | Ensure AWS Config is enabled in all regions | | | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket | | | | 3.7 | Ensure CloudTrail logs are encrypted at rest using KMS CMKs | | | | 3.8 | Ensure rotation for customer created symmetric CMKs is enabled | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs | | | | 3.10 | Ensure that Object-level logging for write events is enabled for S3 bucket | | | | 3.11 | Ensure that Object-level logging for read events is enabled for S3 bucket | | | | 4.1 | Ensure a log metric filter and alarm exist for unauthorized API calls | | | | 4.3 | Ensure a log metric filter and alarm exist for usage of 'root' account | | | | 4.8 | Ensure a log metric filter and alarm exist for S3 bucket policy changes | | | | 4.9 | Ensure a log metric filter and alarm exist for AWS Config configuration changes | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes | | | | 4.11 | Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) | | | | 4.12 | Ensure a log metric filter and alarm exist for changes to network gateways | | | | 4.13 | Ensure a log metric filter and alarm exist for route table changes | | | | | Recommendation | | et
ectly | |------|--|-----|-------------| | | | Yes | No | | 4.14 | Ensure a log metric filter and alarm exist for VPC changes | | | | 4.15 | Ensure a log metric filter and alarm exists for AWS Organizations changes | | | | 4.16 | Ensure AWS Security Hub is enabled | | | | 5.1 | Ensure no
Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports | | | | 5.2 | Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports | | | | 5.3 | Ensure no security groups allow ingress from ::/0 to remote server administration ports | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic | | | | 5.5 | Ensure routing tables for VPC peering are "least access" | | | # **Appendix: CIS Controls v7 Unmapped Recommendations** | Recommendation | Set
Correctly | | |--|------------------|----| | | Yes | No | | No unmapped recommendations to CIS Controls v7.0 | | | # **Appendix: CIS Controls v8 IG 1 Mapped Recommendations** | | Recommendation | Se
Corre | - | |-------|--|-------------|----| | | | Yes | No | | 1.1 | Maintain current contact details | | | | 1.2 | Ensure security contact information is registered | | | | 1.3 | Ensure security questions are registered in the AWS account | | | | 1.4 | Ensure no 'root' user account access key exists | | | | 1.5 | Ensure MFA is enabled for the 'root' user account | | | | 1.6 | Ensure hardware MFA is enabled for the 'root' user account | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks | | | | 1.8 | Ensure IAM password policy requires minimum length of 14 or greater | | | | 1.9 | Ensure IAM password policy prevents password reuse | | | | 1.10 | Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password | | | | 1.11 | Do not setup access keys during initial user setup for all IAM users that have a console password | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled | | | | 1.16 | Ensure IAM policies that allow full "*:*" administrative privileges are not attached | | | | 1.17 | Ensure a support role has been created to manage incidents with AWS Support | | | | 1.19 | Ensure that all the expired SSL/TLS certificates stored in AWS IAM are removed | | | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets | | | | 2.1.4 | Ensure all data in Amazon S3 has been discovered, classified and secured when required. | | | | Recommendation | | Se
Corre | | |----------------|--|-------------|----| | | | Yes | No | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances | | | | 2.3.3 | Ensure that public access is not given to RDS Instance | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible | | | | 3.5 | Ensure AWS Config is enabled in all regions | | | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic | | | | 5.5 | Ensure routing tables for VPC peering are "least access" | | | # **Appendix: CIS Controls v8 IG 2 Mapped Recommendations** | | Recommendation | Se
Corre | - | |------|--|-------------|----| | | | Yes | No | | 1.1 | Maintain current contact details | | | | 1.2 | Ensure security contact information is registered | | | | 1.3 | Ensure security questions are registered in the AWS account | | | | 1.4 | Ensure no 'root' user account access key exists | | | | 1.5 | Ensure MFA is enabled for the 'root' user account | | | | 1.6 | Ensure hardware MFA is enabled for the 'root' user account | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks | | | | 1.8 | Ensure IAM password policy requires minimum length of 14 or greater | | | | 1.9 | Ensure IAM password policy prevents password reuse | | | | 1.10 | Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password | | | | 1.11 | Do not setup access keys during initial user setup for all IAM users that have a console password | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled | | | | 1.16 | Ensure IAM policies that allow full "*:*" administrative privileges are not attached | | | | 1.17 | Ensure a support role has been created to manage incidents with AWS Support | | | | 1.19 | Ensure that all the expired SSL/TLS certificates stored in AWS IAM are removed | | | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions | | | | 1.21 | Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments | | | | | Recommendation | Se
Corre | - | |-------|---|-------------|----| | | | Yes | No | | 2.1.1 | Ensure all S3 buckets employ encryption-at-rest | | | | 2.1.2 | Ensure S3 Bucket Policy is set to deny HTTP requests | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets | | | | 2.1.4 | Ensure all data in Amazon S3 has been discovered, classified and secured when required. | | | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' | | | | 2.2.1 | Ensure EBS Volume Encryption is Enabled in all Regions | | | | 2.3.1 | Ensure that encryption is enabled for RDS Instances | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances | | | | 2.3.3 | Ensure that public access is not given to RDS Instance | | | | 2.4.1 | Ensure that encryption is enabled for EFS file systems | | | | 3.1 | Ensure CloudTrail is enabled in all regions | | | | 3.2 | Ensure CloudTrail log file validation is enabled | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible | | | | 3.4 | Ensure CloudTrail trails are integrated with CloudWatch Logs | | | | 3.5 | Ensure AWS Config is enabled in all regions | | | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket | | | | 3.7 | Ensure CloudTrail logs are encrypted at rest using KMS CMKs | | | | 3.8 | Ensure rotation for customer created symmetric CMKs is enabled | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs | | | | 3.10 | Ensure that Object-level logging for write events is enabled for S3 bucket | | | | 3.11 | Ensure that Object-level logging for read events is enabled for S3 bucket | | | | 4.1 | Ensure a log metric filter and alarm exist for unauthorized API calls | | | | | Recommendation | Se
Corre | | |------|---|-------------|----| | | | Yes | No | | 4.2 | Ensure a log metric filter and alarm exist for Management Console sign-in without MFA | | | | 4.3 | Ensure a log metric filter and alarm exist for usage of 'root' account | | | | 4.4 | Ensure a log metric filter and alarm exist for IAM policy changes | | | | 4.5 | Ensure a log metric filter and alarm exist for CloudTrail configuration changes | | | | 4.6 | Ensure a log metric filter and alarm exist for AWS Management Console authentication failures | | | | 4.7 | Ensure a log metric filter and alarm exist for disabling or scheduled deletion of customer created CMKs | | | | 4.8 | Ensure a log metric filter and alarm exist for S3 bucket policy changes | | | | 4.9 | Ensure a log metric filter and alarm exist for AWS Config configuration changes | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes | | | | 4.11 | Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) | | | | 4.12 | Ensure a log metric filter and alarm exist for changes to network gateways | | | | 4.13 | Ensure a log metric filter and alarm exist for route table changes | | | | 4.14 | Ensure a log metric filter and alarm exist for VPC changes | | | | 4.15 | Ensure a log metric filter and alarm exists for AWS Organizations changes | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic | | | | 5.5 | Ensure routing tables for VPC peering are "least access" | | | # **Appendix: CIS Controls v8 IG 3 Mapped Recommendations** | | Recommendation | Se
Corre | | |------|--|-------------|----| | | | Yes | No | | 1.1 | Maintain current contact details | | | | 1.2 | Ensure security contact information is registered | | | | 1.3 | Ensure security questions are registered in the AWS account | | | | 1.4 | Ensure no 'root' user account access key exists | | | | 1.5 | Ensure MFA is enabled for the 'root' user account | | | | 1.6 | Ensure hardware MFA is enabled for the 'root' user account | | | | 1.7 | Eliminate use of the 'root' user for administrative and daily tasks | | | | 1.8 | Ensure IAM password policy requires minimum length of 14 or greater | | | | 1.9 | Ensure IAM password policy prevents password reuse | | | | 1.10 | Ensure multi-factor authentication (MFA) is enabled for all IAM users that have a console password | | | | 1.11 | Do not setup access keys during initial user setup for all IAM users that have a console password | | | | 1.12 | Ensure credentials unused for 45 days or greater are disabled | | | | 1.15 | Ensure IAM Users Receive Permissions Only Through Groups | | | | 1.16 | Ensure IAM policies that allow full "*:*" administrative privileges are not attached | | | | 1.17 | Ensure a support role has been created to manage incidents with AWS Support | | | | 1.18 | Ensure IAM instance roles are used for AWS resource access from
instances | | | | 1.19 | Ensure that all the expired SSL/TLS certificates stored in AWS IAM are removed | | | | | Recommendation | Se
Corre | | |-------|--|-------------|----| | | | Yes | No | | 1.20 | Ensure that IAM Access analyzer is enabled for all regions | | | | 1.21 | Ensure IAM users are managed centrally via identity federation or AWS Organizations for multi-account environments | | | | 2.1.1 | Ensure all S3 buckets employ encryption-at-rest | | | | 2.1.2 | Ensure S3 Bucket Policy is set to deny HTTP requests | | | | 2.1.3 | Ensure MFA Delete is enabled on S3 buckets | | | | 2.1.4 | Ensure all data in Amazon S3 has been discovered, classified and secured when required. | | | | 2.1.5 | Ensure that S3 Buckets are configured with 'Block public access (bucket settings)' | | | | 2.2.1 | Ensure EBS Volume Encryption is Enabled in all Regions | | | | 2.3.1 | Ensure that encryption is enabled for RDS Instances | | | | 2.3.2 | Ensure Auto Minor Version Upgrade feature is Enabled for RDS Instances | | | | 2.3.3 | Ensure that public access is not given to RDS Instance | | | | 2.4.1 | Ensure that encryption is enabled for EFS file systems | | | | 3.1 | Ensure CloudTrail is enabled in all regions | | | | 3.2 | Ensure CloudTrail log file validation is enabled | | | | 3.3 | Ensure the S3 bucket used to store CloudTrail logs is not publicly accessible | | | | 3.4 | Ensure CloudTrail trails are integrated with CloudWatch Logs | | | | 3.5 | Ensure AWS Config is enabled in all regions | | | | 3.6 | Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket | | | | 3.7 | Ensure CloudTrail logs are encrypted at rest using KMS CMKs | | | | 3.8 | Ensure rotation for customer created symmetric CMKs is enabled | | | | 3.9 | Ensure VPC flow logging is enabled in all VPCs | | | | 3.10 | Ensure that Object-level logging for write events is enabled for S3 bucket | | | | | Recommendation | Se
Corre | | |------|---|-------------|----| | | | Yes | No | | 3.11 | Ensure that Object-level logging for read events is enabled for S3 bucket | | | | 4.1 | Ensure a log metric filter and alarm exist for unauthorized API calls | | | | 4.2 | Ensure a log metric filter and alarm exist for Management Console sign-in without MFA | | | | 4.3 | Ensure a log metric filter and alarm exist for usage of 'root' account | | | | 4.4 | Ensure a log metric filter and alarm exist for IAM policy changes | | | | 4.5 | Ensure a log metric filter and alarm exist for CloudTrail configuration changes | | | | 4.6 | Ensure a log metric filter and alarm exist for AWS Management Console authentication failures | | | | 4.7 | Ensure a log metric filter and alarm exist for disabling or scheduled deletion of customer created CMKs | | | | 4.8 | Ensure a log metric filter and alarm exist for S3 bucket policy changes | | | | 4.9 | Ensure a log metric filter and alarm exist for AWS Config configuration changes | | | | 4.10 | Ensure a log metric filter and alarm exist for security group changes | | | | 4.11 | Ensure a log metric filter and alarm exist for changes to Network Access Control Lists (NACL) | | | | 4.12 | Ensure a log metric filter and alarm exist for changes to network gateways | | | | 4.13 | Ensure a log metric filter and alarm exist for route table changes | | | | 4.14 | Ensure a log metric filter and alarm exist for VPC changes | | | | 4.15 | Ensure a log metric filter and alarm exists for AWS Organizations changes | | | | 5.1 | Ensure no Network ACLs allow ingress from 0.0.0.0/0 to remote server administration ports | | | | 5.2 | Ensure no security groups allow ingress from 0.0.0.0/0 to remote server administration ports | | | | Recommendation | | | Set
Correctly | | |----------------|---|-----|------------------|--| | | | Yes | No | | | 5.3 | Ensure no security groups allow ingress from ::/0 to remote server administration ports | | | | | 5.4 | Ensure the default security group of every VPC restricts all traffic | | | | | 5.5 | Ensure routing tables for VPC peering are "least access" | | | | ## **Appendix: CIS Controls v8 Unmapped Recommendations** | | Recommendation | | Set
Correctly | | |------|------------------------------------|-----|------------------|--| | | | Yes | No | | | 4.16 | Ensure AWS Security Hub is enabled | | | | ### **Appendix: Change History** | Date | Version | Changes for this version | |--------------|---------|--| | Mar 30, 2022 | 1.5.0 | UPDATE - Ensure EBS Volume Encryption is Enabled in all Regions - Update to title as this is Region level Configuration (Ticket 15165) | | Jun 14, 2022 | 1.5.0 | UPDATE - Ensure CloudTrail log file validation is enabled - Console section names (Ticket 15682) | | Jun 30, 2022 | 1.5.0 | UPDATE - Do not setup access keys during initial user setup for all IAM users that have a console password - Assessment Status change (Ticket 14270) | | Jun 30, 2022 | 1.5.0 | UPDATE - Ensure all S3 buckets employ encryption-at-
rest - Assessment Status change (Ticket 14269) | | Jun 30, 2022 | 1.5.0 | UPDATE - Ensure EBS Volume Encryption is Enabled in all Regions - Change Assessment Status (Ticket 14272) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure credentials unused for 45 days or greater are disabled - root account should be excluded (Ticket 14251) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure rotation for customer created CMKs is enabled - Update to specify symmetric keys (Ticket 13616) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure S3 Bucket Policy is set to deny HTTP requests - Console output update (Ticket 15679) | | Jul 12, 2022 | 1.5.0 | ADD - Ensure Auto Minor Version Upgrade feature is
Enabled for RDS Instances (Ticket 15680) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure S3 bucket access logging is enabled on the CloudTrail S3 bucket - add CLI for remediation (Ticket 15683) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure VPC flow logging is enabled in all VPCs - add CLI steps for audit and remediation (Ticket 15684) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure S3 Bucket Policy is set to deny HTTP requests - Assessment Status (Ticket 14271) | | Jul 12, 2022 | 1.5.0 | UPDATE - Ensure that Object-level logging for write events is enabled for S3 bucket - Logging is cross region but automation is per region (Ticket 13233) | |--------------|-------|--| | Jul 29, 2022 | 1.5.0 | ADD - Ensure no security groups allow ingress from ::/0 to remote server administration ports (Ticket 13557) | | Aug 2, 2022 | 1.5.0 | UPDATE - Ensure a log metric filter and alarm exist for unauthorized API calls - Step 3 of Audit Procedure and Step 1 of remediation procedure are not aligned. (Ticket 13787) | | Aug 2, 2022 | 1.5.0 | UPDATE - Ensure that encryption is enabled for RDS Instances - MITRE mapping appears to have misspelled mitigation in spreadsheet (Ticket 15844) | | Aug 2, 2022 | 1.5.0 | UPDATE - Ensure IAM password policy prevents password reuse - MITRE mapping appears to have misspelled Tactic in spreadsheet (Ticket 15846) | | Aug 2, 2022 | 1.5.0 | UPDATE - Ensure IAM password policy requires minimum length of 14 or greater - MITRE mapping appears to have misspelled Tactic in spreadsheet (Ticket 15845) | | Aug 4, 2022 | 1.5.0 | ADD - Ensure that public access is not given to RDS Instance (Ticket 15681) | | Aug 4, 2022 | 1.5.0 | ADD - Ensure AWS Security Hub is enabled (Ticket 12763) | | Aug 12, 2022 | 1.5.0 | Add - Ensure that encryption is enabled for EFS file systems (Ticket 12867) | | Jun 7, 2021 | 1.4.0 | UPDATE - Ensure guest users are reviewed on a monthly basis - Typos and wording change in rationale (Ticket 12708) | | Jun 7, 2021 | 1.4.0 | UPDATE - Ensure that 'Allow users to remember multi-
factor authentication on devices they trust' is 'Disabled' -
Wording change (Ticket 12728) | | Sep 8, 2021 | 1.4.0 | Update - Ensure that 'Restrict user ability to access groups features in the Access Pane' is set to "Yes" - Value should be set to Yes (Ticket 12241) | | Sep 9, 2021 | 1.4.0 | Update - Ensure that 'Users can register applications' is set to "No" - References (Ticket 12965) | |--------------|-------|---| | Sep 9, 2021 | 1.4.0 | UPDATE - Ensure that Azure Active Directory Admin is configured - No CLI command provided for Audit and Remdiation CLi command not working (Ticket 12753) | | Sep 13, 2021 | 1.4.0 | UPDATE - For High Security Requirements Ensure that 'OS and Data' disks are encrypted with CMK - change rational wording (Ticket 13087) | | Sep 13, 2021 | 1.4.0 | Update - 5.1.2 Ensure Diagnostic Setting captures appropriate categories - Rule 5.1.2: Typo in the Audit Procedure with the Azure Command Line Interface 2.0 subheading (Ticket 13678) | | Sep 16, 2021 | 1.4.0 | Update - Ensure that 'Guest user permissions are limited' is set to "Yes" -Change title to "Ensure that 'Guest user access' is not set to 'Guest users have the same access as members'" (Ticket 13549) | | Sep 16, 2021 | 1.4.0 | Update - Ensure that 'Secure transfer required' is set to 'Enabled' - single quotes missing from audit command (Ticket 13754) | | Sep 16, 2021 | 1.4.0 | Update - 5.1.1 Ensure that a 'Diagnostics Setting' exists - Change Assessment Status to manual (Ticket 13755) | | Sep 16, 2021 | 1.4.0 | UPDATE - Ensure
'Additional email addresses' is
configured with a security contact email - Issue with Azure
CLI Command & Remediation Azure CLI Command
(Ticket 12786) | | Sep 17, 2021 | 1.4.0 | UPDATE - Ensure that 'Multi-Factor AUTH Status' is
'Enabled' for all Privileged Users - Clarified MFA to users, groups and roles (Ticket 12703) | | Sep 17, 2021 | 1.4.0 | UPDATE - Ensure that 'Multi-Factor AUTH STATUS' is
'Enabled' for all Non-Privileged Users - wording change in
Impact Statement (Ticket 12706) | | Sep 17, 2021 | 1.4.0 | Update - Notify all admins when other admins reset their password?' is set to 'Yes' - Reference to procedure (Ticket 12962) | | Sep 21, 2021 | 1.4.0 | Update - All Titles and Content - Quotation marks (Ticket 12960) | | Sep 23, 2021 | 1.4.0 | UPDATE - 1.16 'Restrict user ability to access groups features in the Access Pane' option should be set to 'Yes' (Ticket 13547) | |--------------|-------|---| | Sep 23, 2021 | 1.4.0 | UPDATE - Ensure That 'Log Analytics agent for Azure VMs' is Set to 'On' - Incorrect Azure Console Audit Procedure & Azure Console Remediation Procedure (Ticket 12734) | | Sep 24, 2021 | 1.4.0 | Update - Ensure that 'Python version' is the Latest Stable Version, if Used to Run the Web App - Rule 9.7:
Clarification on the 'latest' version of Python (Ticket 13826) | | Oct 7, 2021 | 1.4.0 | UPDATE - Ensure Storage for Critical Data are Encrypted with Customer Managed Keys - Change to Manual assessment (Ticket 13814) | | Oct 7, 2021 | 1.4.0 | Update - Ensure 'Trusted Microsoft Services' are Enabled for Storage Account Access - Change to Automated assessment status (Ticket 13858) | | Oct 8, 2021 | 1.4.0 | UPDATE - Ensure that 'Python version' is the Latest
Stable Version, if Used to Run the Web App - Issue with
Audit Azure CLI Command & Remediation Azure CLI
Command (Ticket 12926) | | Oct 8, 2021 | 1.4.0 | UPDATE - Ensure that only approved extensions are installed - Assessment Method question (Ticket 13545) | | Oct 13, 2021 | 1.4.0 | UPDATE- Ensure That Storage Account Access Keys are
Periodically Regenerated - Modify Audit Procedure - Azure
Command Line (Ticket 13967) | | Oct 13, 2021 | 1.4.0 | UPDATE- Ensure That 'PHP version' is the Latest, If Used to Run the Web App - Rule 9.6: Default value is incorrect/out of date (Ticket 13962) | | Oct 13, 2021 | 1.4.0 | Update- Ensure that 'Notify users on password resets?' is set to 'Yes' - References (Ticket 12959) | | Oct 13, 2021 | 1.4.0 | Update- Identity and Access Management -References (Ticket 12961) | | Oct 14, 2021 | 1.4.0 | Ensure that Windows Defender ATP (WDATP) integration with Security Center is selected (Manual) (Ticket 13675) | | Oct 14, 2021 | 1.4.0 | UPDATE - Ensure that Windows Defender ATP (WDATP) integration with Security Center is selected - Correction in Audit procedure for Azure Console & issue with Remediation Azure Console also CLI input.json (Ticket 12700) | |--------------|-------|--| | Oct 14, 2021 | 1.4.0 | Update - Ensure App Service Authentication is Set On
Azure App Service - Rule 9.1: Proposed changes
suggested for this rule (Ticket 13958) | | Oct 14, 2021 | 1.4.0 | UPDATE - Ensure that 'Users can add gallery apps to their Access Panel' is set to 'No' - changed from Access Panel to My apps (Ticket 13421) | | Oct 14, 2021 | 1.4.0 | ADD - MySQL Database - Add sub-section under database services (Ticket 13984) | | Oct 14, 2021 | 1.4.0 | UPDATE - Ensure 'Enforce SSL connection' is set to
'ENABLED' for MySQL Database Server - Move to MySQL section (Ticket 13985) | | Oct 20, 2021 | 1.4.0 | UPDATE - Ensure that 'Users can consent to apps accessing company data on their behalf' is set to 'No' - unneeded References (Ticket 12963) | | Oct 20, 2021 | 1.4.0 | Update - Ensure That 'Number of methods required to reset' is set to '2' - Clarify wording (Ticket 12954) | | Oct 20, 2021 | 1.4.0 | UPDATE - Ensure that 'HTTP Version' is the Latest, if Used to Run the Web App - Rule could be automated, based on REST API endpoint output (Ticket 13827) | | Oct 21, 2021 | 1.4.0 | UPDATE - Ensure that Microsoft Cloud App Security (MCAS) integration with Security Center is selected - correction to Remediation Console procedure & CLI input.json (Ticket 12701) | | Oct 21, 2021 | 1.4.0 | UPDATE - Ensure that 'PHP version' is the latest, if used to run the web app - Issue with Audit Azure CLI Command & Remediation Azure CLI Command (Ticket 12925) | | Oct 21, 2021 | 1.4.0 | Update - Ensure That 'PHP version' is the Latest, If Used to Run the Web App - Rule 9.6: Proposed change contains a number of suggestions (Ticket 13964) | | Oct 22, 2021 | 1.4.0 | UPDATE - Ensure that Azure Defender is set to On for SQL servers on machines - Issue with Audit CLI command parameter, Powershell command parameter and Remediation CLI command (Ticket 12688) | |--------------|-------|--| | Oct 22, 2021 | 1.4.0 | UPDATE - Ensure that Azure Defender is set to On for Kubernetes - Issue with Remediation Procedure for Command Line Interface i.e. CLI (Ticket 12689) | | Oct 22, 2021 | 1.4.0 | UPDATE - Ensure that Azure Defender is set to On for Container Registries - Issue with Remediation Procedure for Command Line Interface i.e. CLI (Ticket 12690) | | Oct 22, 2021 | 1.4.0 | UPDATE - Ensure that Azure Defender is set to On for
Key Vault - Issue with Audit Procedure for Powershell &
Remediation Procedure for Command Line Interface
(Ticket 12691) | | Oct 22, 2021 | 1.4.0 | UPDATE - Ensure that 'Notify about alerts with the following severity' is set to 'High' - Issue with Audit CLI Command (Ticket 12724) | | Oct 22, 2021 | 1.4.0 | UPDATE - Ensure soft delete is enabled for Azure Storage - Issue with Audit CLI Command & Remediation CLI command (Ticket 12692) | | Oct 28, 2021 | 1.4.0 | UPDATE - Ensure that 'All users with the following roles' is set to 'Owner' - Issue with Azure CLI Command & Remediation Azure CLI input json (Ticket 12733) | | Oct 28, 2021 | 1.4.0 | UPDATE - Ensure SQL server's TDE protector is
encrypted with Customer-managed key - Issue with Audit
Azure CLI Command & Remediation Azure CLI Command
(Ticket 12752) | | Oct 28, 2021 | 1.4.0 | UPDATE - Ensure that logging for Azure KeyVault is 'Enabled' - Issue with Audit Azure Console Procedure & Remediation Azure CLI Command link procedure (Ticket 12811) | | Oct 28, 2021 | 1.4.0 | UPDATE - Ensure guest users are reviewed on a monthly basis - Change assessment status to manual (Ticket 13935) | | Oct 28, 2021 | 1.4.0 | UPDATE - Ensure that 'OS and Data' disks are encrypted with Customer Managed Key (CMK) - Clarify which Azure encryption feature(s) satisfy 7.2 (Ticket 13237) | |--------------|-------|--| | Nov 4, 2021 | 1.4.0 | UPDATE - Ensure that 'Notify about alerts with the following severity' is set to 'High' - CLI changes and remediation wording change (Ticket 12935) | | Nov 4, 2021 | 1.4.0 | Update - Ensure that 'Guest invite restrictions' is set to "Only users assigned to specific admin roles can invite guest users", Ensure That 'Guests can invite' is Set to 'No' - Merge 1.13 and 1.14 into one recommendation: 1.xx Ensure 'Guest invite rest (Ticket 13548) | | Nov 10, 2021 | 1.4.0 | ADD - Ensure 'TLS Version' is set to 'TLSV1.2' for MySQL flexible Database Server (Ticket 13804) | | Nov 10, 2021 | 1.4.0 | UPDATE - Ensure FTP deployments are Disabled - changed to the GUI for audit and remediation (Ticket 14131) | | Nov 10, 2021 | 1.4.0 | UPDATE - Ensure that VHD's are encrypted - Description need to be updated (Ticket 13054) | | Nov 10, 2021 | 1.4.0 | UPDATE - Multiple - Remediation procedure only includes resources to enable MFA, not set it up (Ticket 12705) | | Nov 11, 2021 | 1.4.0 | UPDATE - Ensure that Diagnostic Logs Are Enabled for All
Services that Support it - Change automation status
(Ticket 13829) | | Nov 12, 2021 | 1.4.0 | UPDATE - Security Center - Section name changed to Microsoft Defender for Cloud (Ticket 14134) | | Nov 12, 2021 | 1.4.0 | ADD - Ensure the "Minimum TLS version" is set to "Version 1.2" (Ticket 14135) | | Nov 12, 2021 | 1.4.0 | UPDATE - Ensure any of the ASC Default policy setting is not set to 'Disabled' - Issue with Audit Azure Console Procedure, Azure CLI Command & Remediation Azure Console Procedure (Ticket 12713) | | Nov 12, 2021 | 1.4.0 | UPDATE - Ensure the storage container storing the activity logs is not publicly accessible - No "Export" (Ticket 12941) | | Nov 12, 2021 | 1.4.0 | UPDATE - Security Center Section - Out of date Security
Center Audit/Remediation procedures for Azure Console
(Ticket 14112) | |--------------|-------|---| | Nov 19, 2021 | 1.4.0 | ADD - Ensure 'Infrastructure double encryption' for PostgreSQL Database Server is 'Enabled' (Ticket 13671) | | Jul 6, 2021 | 1.3.1 | UPDATE – XLS Export – Mapped recommendations to MITRE ATT&CK | | Jul 6, 2021 | 1.3.1 | UPDATE – Multiple – Mapped recommendations to CIS
Critical Controls version 8 | | Oct 27, 2020 | 1.3.0 | Update -
Ensure App Service Authentication is set on Azure App Service - additional permissions required to automate this policy/rule (Ticket 8229) | | Nov 12, 2020 | 1.3.0 | DELETE - Ensure that '.Net Framework' version is the latest, if used as a part of the web app - Console location not up to date (Ticket 11599) | | Nov 12, 2020 | 1.3.0 | UPDATE - Ensure that multi-factor authentication is enabled for all privileged users - some instances of userPrincipalName misspelled as userPrincipleName (Ticket 11687) | | Dec 11, 2020 | 1.3.0 | UPDATE - Ensure storage for critical data are encrypted with Customer Managed Key - update wording in Rational and impact (Ticket 11903) | | Dec 11, 2020 | 1.3.0 | UPDATE - Ensure that 'Public access level' is set to
Private for blob containers - add steps for storage account
settings (Ticket 11902) | | Dec 11, 2020 | 1.3.0 | ADD - Ensure Azure Keyvaults are used to store secrets (Ticket 8982) | | Dec 11, 2020 | 1.3.0 | UPDATE - Ensure Diagnostic Setting captures appropriate categories - does not work with the new Diagnostic Setting (Ticket 11627) | | Dec 11, 2020 | 1.3.0 | ADD - Ensure VHDs are encrypted (Ticket 11609) | | Jan 12, 2021 | 1.3.0 | ADD - Ensure that Activity Log Alert exists for Delete Policy Assignment (Ticket 7707) | | Jan 12, 2021 | 1.3.0 | UPDATE - Ensure Security Defaults is enabled on Azure
Active Directory - setting conflicts with the CIS Office
(Microsoft) 365 Benchmark (Ticket 11935) | |--------------|-------|---| | Jan 13, 2021 | 1.3.0 | UPDATE - Ensure guest users are reviewed on a monthly basis - Create Dynamic Group for Guest Users and add Access Review (Ticket 11728) | | Jan 15, 2021 | 1.3.0 | ADD - 2 Recommendations in Security Center Section - 2 currently available Azure Defender bundles are missing (Ticket 11638) | | Jan 15, 2021 | 1.3.0 | UPDATE - Ensure that 'OS and Data' disks are encrypted with CMK - Powershell for changing disk encryption (Ticket 11596) | | Jan 15, 2021 | 1.3.0 | UPDATE - Ensure that Azure Active Directory Admin is configured - Concern that this is an overly simplistic recommendation (Ticket 8852) | | Jan 15, 2021 | 1.3.0 | UPATE - Ensure App Service Authentication is set on
Azure App Service - App Service authentication should be
level 2 not level 1 (Ticket 12063) | | Jan 15, 2021 | 1.3.0 | UPDATE - Ensure the web app has 'Client Certificates (Incoming client certificates)' set to 'On' - Change from level 1 to level 2 (Ticket 12064) | | Jan 18, 2021 | 1.3.0 | UPDATE - Multiple recommendations - Updated reference URLs mapping recommendations to the Azure Security Benchmark | | Jan 28, 2021 | 1.3.0 | DELETE - Ensure server parameter 'log_duration' is set to 'ON' for PostgreSQL Database Server - No clear security value (Ticket 12090) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that a 'Diagnostics Setting' exists - Intent of recommendation is unclear (Ticket 12092) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Delete Policy Assignment - Minor inconsistencies in remediation procedure (Ticket 12089) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Create Policy Assignment - Minor inconsistencies in remediation procedure (Ticket 12088) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Create or Update Network Security Group - Remediation procedure is incorrect (Ticket 12081) | |--------------|-------|--| | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Delete
Network Security Group - Remediation procedure is
incorrect (Ticket 12082) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Create or Update Network Security Group Rule - Remediation procedure is incorrect (Ticket 12083) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that activity log alert exists for the Delete Network Security Group Rule - Remediation procedure is incorrect (Ticket 12084) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Create or Update Security Solution - Remediation procedure is incorrect (Ticket 12085) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Delete
Security Solution - Remediation procedure is incorrect
(Ticket 12086) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Activity Log Alert exists for Create or Update or Delete SQL Server Firewall Rule - Remediation procedure is incorrect (Ticket 12087) | | Jan 28, 2021 | 1.3.0 | UPDATE - Ensure that Advanced Data Security (ADS) and Advanced Threat Protection (ATP) on a SQL server is set to 'On' - ADS and ATP changed to Azure Defender for SQL (Ticket 12124) | | Jan 28, 2021 | 1.3.0 | UPDATE - SQL Server - Advanced Data Security (ADS) - ADS is now Azure Defender (Ticket 12112) | | Jan 28, 2021 | 1.3.0 | DELETE - Multiple in SQL Server - Advanced Data
Security (ADS) section (Ticket 12125) | | Jan 28, 2021 | 1.3.0 | UPDATE - Multiple in 4.2 SQL Server - Advanced Data
Security (ADS) section (Ticket 12126) | | Aug 22, 2019 | 1.2.0 | DELETE- Ensure that Azure Active Directory Admin is configured - Duplicate (Ticket 8018) | | Sep 8, 2019 | 1.2.0 | Added Azure Command Line Interface 2.0 commands (Ticket 7994) | | May 18, 2020 | 1.2.0 | UPDATE - Ensure that 'HTTP Version' is the latest, if used to run the web app - Typo in Audit procedure (Ticket 8628) | |--------------|-------|--| | May 18, 2020 | 1.2.0 | UPDATE - Ensure web app redirects all HTTP traffic to HTTPS in Azure App Service - Incorrect Remediation Procedure (Ticket 8942) | | May 18, 2020 | 1.2.0 | Update - Ensure web app redirects all HTTP traffic to HTTPS in Azure App Service - Typo in Audit Procedure (Ticket 8943) | | May 18, 2020 | 1.2.0 | UPDATE - Ensure App Service Authentication is set on Azure App Service - remediation CLI correction (Ticket 8957) | | Jun 2, 2020 | 1.2.0 | UPDATE - Ensure that multi-factor authentication is enabled for all privileged users - Add reference (Ticket 10368) | | Jun 2, 2020 | 1.2.0 | UPDATE - Ensure that multi-factor authentication is enabled for all non-privileged users - Add reference (Ticket 10369) | | Jun 2, 2020 | 1.2.0 | UPDATE - Ensure that there are no guest users - Add reference guest user delete (Ticket 10370) | | Jun 2, 2020 | 1.2.0 | UPDATE - Ensure that 'Number of methods required to reset' is set to '2' - Add reference (Ticket 10374) | | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Guest user permissions are limited' is set to 'Yes' - add reference (Ticket 10395) | | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Number of days before users are asked to re-confirm their authentication information' is not set to "0" - add reference (Ticket 10375) | | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Notify users on password resets?' is set to 'Yes' - Add reference (Ticket 10376) | | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Notify all admins when other admins reset their password?' is set to 'Yes' - Add reference (Ticket 10377) | | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Users can consent to apps accessing company data on their behalf' is set to 'No' - add reference (Ticket 10382) | | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Users can register applications' is set to 'No' - add reference (Ticket 10394) | |--------------|-------|---| | Jun 12, 2020 | 1.2.0 | UPDATE - Ensure that 'Secure transfer required' is set to 'Enabled' - add reference (Ticket 10272) | | Aug 21, 2020 | 1.2.0 | UPDATE - Ensure that multi-factor authentication is enabled for all privileged users - Change in AAD Settings Location for Users and Groups (Ticket 11196) | | Aug 21, 2020 | 1.2.0 | UPDATE - Multiple - Audit and remediation instructions have changed 1.12, 1.13, 1.14 (Ticket 10504) | | Aug 24, 2020 | 1.2.0 | UPDATE - Mutiple - Add step in audit and remediation for change in GUI (Ticket 11288) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure that 'Require Multi-Factor Auth to join devices' is set to 'Yes' - GUI changes for Audit and remediation (Ticket 11292) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure that 'Automatic provisioning of monitoring agent' is set to 'On' - Remediation procedures has moved location (Ticket 11197) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure Storage logging is enabled for Queue service for read, write, and delete requests - Modify reference (Ticket 10275) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure Storage logging is enabled for Queue service for read, write, and delete requests - Modify Audit Procedure and Remediation Procedure wording (Ticket 10277) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure that ADS - 'Advanced Threat
Protection types' (ATP) is set to 'All' - Edit reference
(Ticket 10304) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure that 'Restrict user ability to access groups features in the Access Panel' is set to 'No' - Change Audit, Remeditation Procedure (Ticket 10397) | | Aug 24, 2020 | 1.2.0 | UPDATE - Ensure that 'Users can create security groups' is set to 'No' - Edit Audit Procedure, Remedation Procedure (Ticket 10398) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure 'Enforce SSL connection' is set to
'ENABLED' for PostgreSQL Database Server - invalid
reference (Ticket 10330) | |--------------|-------
--| | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure 'Enforce SSL connection' is set to
'ENABLED' for MySQL Database Server - Add reference
(Ticket 10331) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure server parameter 'log_checkpoints' is set to 'ON' for PostgreSQL Database Server - Add referenced (Ticket 10332) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure server parameter 'log_connections' is set to 'ON' for PostgreSQL Database Server - Add reference (Ticket 10333) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure server parameter 'log_disconnections' is set to 'ON' for PostgreSQL Database Server - Add reference (Ticket 10334) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure server parameter 'log_duration' is set to 'ON' for PostgreSQL Database Server - Add reference (Ticket 10335) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure server parameter 'connection_throttling' is set to 'ON' for PostgreSQL Database Server - Add reference (Ticket 10337) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure server parameter 'log_retention_days' is greater than 3 days for PostgreSQL Database Server - Add reference (Ticket 10339) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure that 'OS disk' are encrypted - Edit reference (Ticket 10264) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure that 'OS disk' are encrypted - Add
Remediation Procedures (Ticket 10265) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure that 'Data disks' are encrypted - Edit reference (Ticket 10266) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure that 'Data disks' are encrypted - Add
Remediation Procedures (Ticket 10267) | | Aug 26, 2020 | 1.2.0 | UPDATE - Ensure that 'Unattached disks' are encrypted - Edit reference (Ticket 10269) | | A 07 0000 | 1.0.0 | DELETE English that IEmphia "All Hagge" avaluation act to | |--------------|-------|---| | Aug 27, 2020 | 1.2.0 | DELETE - Ensure that 'Enable "All Users" group' is set to
'Yes' - Request to delete recommendation (Ticket 10401) | | Sep 10, 2020 | 1.2.0 | ADD - MULTIPLE - SQL Advanced Data Security related controls (Ticket 9081) | | Sep 22, 2020 | 1.2.0 | ADD - Ensure soft delete is enabled for Azure Storage (Ticket 11450) | | Sep 22, 2020 | 1.2.0 | DELETE - Ensure that 'AuditActionGroups' in 'auditing' policy for a SQL server is set properly (Ticket 11229) | | Sep 22, 2020 | 1.2.0 | UPDATE - Ensure that ADS - ATP 'Email service and co-
administrators' is 'Enabled' - Modify term (Ticket 10310) | | Sep 22, 2020 | 1.2.0 | UPDATE - Ensure SQL server's TDE protector is encrypted with BYOK (Use your own key) - Change the expression 'Use Your own key' (Ticket 10341) | | Sep 22, 2020 | 1.2.0 | ADD - Ensure that Diagnostic Logs are enabled for all services which support it. (Ticket 11453) | | Sep 24, 2020 | 1.2.0 | UPDATE - Ensure that the expiration date is set on all keys - additional permissions required to automate this policy/rule (Ticket 8228) | | Sep 24, 2020 | 1.2.0 | Add Remediation - Ensure that UDP Services are restricted from the Internet (Ticket 10271) | | Oct 7, 2020 | 1.2.0 | UPDATE - Ensure that there are no guest users - Azure Command Line Interface 2.0 doesn't work as expected. (Ticket 11376) | | Oct 7, 2020 | 1.2.0 | UPDATE - Ensure that shared access signature tokens expire within an hour - Remediation Procedure 3.4 Ensure that shared access signature tokens expire within an hour (Ticket 10278) | | Oct 7, 2020 | 1.2.0 | UPDATE - Ensure that storage account access keys are periodically regenerated - add reference (Ticket 10273) | | Oct 7, 2020 | 1.2.0 | UPDATE - Ensure that storage account access keys are periodically regenerated - Add Remediation Procedure (Ticket 10274) | | Oct 13, 2020 | 1.2.0 | Update - Ensure that storage account access keys are periodically regenerated - change az cli command in audit procedure (Ticket 7995) | |--------------|-------|---| | Oct 13, 2020 | 1.2.0 | UPDATE - Ensure guest users are reviewed on a monthly basis - added PowerShell Check in audit (Ticket 11475) | | Oct 13, 2020 | 1.2.0 | DELETE - Ensure that security contact 'Phone number' is set (Ticket 11228) | | Oct 13, 2020 | 1.2.0 | UPDATE - Ensure that 'Users can create Microsoft 365 groups in Azure Portals' is set to 'No' - Replace 'Office 365' with 'Microsoft 365' and update references. (Ticket 11363) | | Oct 13, 2020 | 1.2.0 | DELETE - Ensure that 'Users who can manage Office 365 groups' is set to 'None' (Ticket 10400) | | Oct 13, 2020 | 1.2.0 | ADD - Ensure FTP deployments are disabled (Ticket 10503) | | Oct 13, 2020 | 1.2.0 | UPDATE - Ensure that no custom subscription owner roles are created - PowerShell Check (Ticket 11479) | | Oct 14, 2020 | 1.2.0 | Add - Ensure any of the ASC Default policy setting is not set to "Disabled" - Consolidate recommendations (Ticket 8791) | | Oct 14, 2020 | 1.2.0 | new not scored recommendations : Threat Detection Integration (Ticket 9047) | | Oct 15, 2020 | 1.2.0 | ADD - Ensure Security Defaults is enabled on Azure
Active Directory (Ticket 11293) | | Oct 15, 2020 | 1.2.0 | ADD - Ensure storage for critical data are encrypted with Customer Managed Key (Ticket 10279) | | Oct 15, 2020 | 1.2.0 | UPDATE - Ensure that 'Users who can manage security groups' is set to 'None' - Change to wording (Owners can manage group membership requests in the Access Panel) (Ticket 10399) | | Oct 15, 2020 | 1.2.0 | UPDATE - Ensure that there are no guest users - Ensure that all Guest users are reviewed regularly rather than say they are not permitted (Ticket 10897) | | Oct 15, 2020 | 1.2.0 | ADD - subsections in Database Services section -
Creating Subsections for better separation and ease for
the end user (Ticket 9091) | |--------------|-------|--| | Oct 15, 2020 | 1.2.0 | DELETE - Ensure that shared access signature tokens are allowed only over https - This appears to be mitigated by 3.1. (Ticket 8711) | | Oct 15, 2020 | 1.2.0 | UPDATE - Ensure that Network Watcher is 'Enabled' - Info outdated in the recommendation. (Ticket 11559) | | Oct 15, 2020 | 1.2.0 | UPDATE - Ensure that Network Watcher is 'Enabled' - CLI
Audit command does not list disabled regions. (Ticket
10906) | | Oct 15, 2020 | 1.2.0 | DELETE - Ensure that Activity Log Alert exists for Update Security Policy (Ticket 7706) | | Oct 19, 2020 | 1.2.0 | UPDATE - Ensure that standard pricing tier enabled for Virtual Machines - Add PowerShell Check (Ticket 11480) | | Oct 19, 2020 | 1.2.0 | UPDATE - Ensure that standard pricing tier enabled for PaaS SQL servers - Add PowerShell Check (Ticket 11481) | | Oct 19, 2020 | 1.2.0 | UPDATE - Ensure that standard pricing tier enabled for App Service - Add PowerShell Check (Ticket 11482) | | Oct 19, 2020 | 1.2.0 | UPDATE - Ensure that standard pricing tier enabled for Storage Accounts - Add PowerShell Check (Ticket 11483) | | Oct 19, 2020 | 1.2.0 | UDATE - Ensure that 'Automatic provisioning of monitoring agent' is set to 'On' - Add PowerShell Check (Ticket 11484) | | Oct 19, 2020 | 1.2.0 | UPDATE - Ensure any of the ASC Default policy setting is not set to "Disabled" - Audit procedure for section 2.8 produces misleading results (Ticket 9196) | | Oct 20, 2020 | 1.2.0 | UPDATE - Ensure that Advanced Data Security (ADS) and Advanced Threat Protection (ATP) on a SQL server is set to 'On' - Edit reference (Ticket 10303) | | Oct 21, 2020 | 1.2.0 | UPDATE - Ensure that 'Users can consent to apps accessing company data on their behalf' is set to 'No' - add PowerShell check (Ticket 11477) | | 2.0 | | |-----|---| | 2.0 | UPDATE - Ensure that 'Users can register applications' is set to 'No' - Add PowerShell Check (Ticket 11478) | | 2.0 | ADD - Ensure 'Allow access to Azure services' for PostgreSQL Database Server is disabled (Ticket 11451) | | 2.0 | UPDATE - Ensure that Activity Log Alert exists for Delete
Security Solution - fix the category of the metric rule for
delete Security Solution (Ticket 11510) | | 2.0 | UPDATE - Ensure that Activity Log Alert exists for Create or Update Security Solution - fix the category of the metric rule for Create or Update Security Solution (Ticket 11511) | | 2.0 | UPDATE - Ensure that 'Security contact emails' is set -
Setting location change and renamed within Azure Portal
(Ticket 11561) | | 2.0 | UPDATE - Ensure that 'Send email notification for high severity alerts' is set to 'On' - Settings location and naming convention change in Azure Portal (Ticket 11562) | | 2.0 | UPDATE - Ensure that 'Send email also to subscription owners' is set to 'On' - setting location and name change in Azure Portal (Ticket 11563) | | 2.0 | ADD - Ensure Storage logging is enabled for Blob service for read, write, and delete requests (Ticket 11564) | | 2.0 | ADD - Ensure Storage logging is enabled for Table service for read, write, and delete requests (Ticket 11565) | | 2.0 | UPDATE - Multiple recommendations in section 5.2 - add UI remediation steps (Ticket 11554) | | 2.0 | REMOVE - Log activity for all regions - This may no longer be valid if log settings is going away (Ticket 11583) | | 2.0 | REMOVE - activity log to 365 days - No equivalent to this under Diagnostics settings (Ticket 11582) | | 2.0 | Add UI steps to configuring Storage Profile (Ticket 8225) | | 2.0 | ADD - Ensure Virtual
Machines are utilizing Managed Disks (Ticket 11568) | | | 2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0 | | Oct 22, 2020 | 1.2.0 | UPDATE - Log profile recommendations should include recommendations for exporting to event hub (Ticket 9524) | |--------------|-------|--| | Oct 22, 2020 | 1.2.0 | UPDATE - Log profiles are being replaced with diagnostic settings for activity logs (Ticket 9523) | | Oct 22, 2020 | 1.2.0 | UPDATE - Ensure the web app has 'Client Certificates (Incoming client certificates)' set to 'On' - Console option location not up to date (Ticket 11598) | | Oct 22, 2020 | 1.2.0 | UPDATE - Ensure that 'PHP version' is the latest, if used to run the web app - Console location not up to date (Ticket 11600) | | Oct 22, 2020 | 1.2.0 | UPDATE - Ensure that 'HTTP Version' is the latest, if used to run the web app - Console location not up to date (Ticket 11601) | | Oct 22, 2020 | 1.2.0 | ADD - Ensure that 'OS and Data' disks are encrypted (replace OS and Data individual recommendations) (Ticket 11595) | | Oct 23, 2020 | 1.2.0 | UPDATE - Ensure that 'Unattached disks' are encrypted - Azure CIS 7.1-7.3 Guideline needs to be revisited in all aspects (Ticket 11342) | | Oct 26, 2020 | 1.2.0 | UPDATE - Ensure that Azure Defender is set to On for Virtual Machines - Virtual Machines changed to Servers (Ticket 11617) | | Oct 26, 2020 | 1.2.0 | ADD - recommendations for Azure Defender for all resource types (Ticket 8866) | | Oct 27, 2020 | 1.2.0 | UPDATE - Multiple Security Center Resource
Recommendations - Azure Security Center standard tier is
now called 'Azure Defender' (Ticket 11537) | | Oct 31, 2020 | 1.2.0 | ADD - Ensure Custom Role is assigned for Administering Resource Locks - Recommend creating an RBAC role to administer Resource locks (Ticket 8790) | | 2/15/2019 | 1.1.0 | DELETE - 3.2 and 3.6 - Ensure that 'Storage Rules are no longer valid or do not require | | 2/15/2019 | 1.1.0 | UPDATE - 2.17 Ensure that security contact - Not digitally signed warning | | 2/15/2019 | 1.1.0 | UPDATE - 5.1.2 Ensure that Activity Log Retention Days set to 0 to allow indefinite retention | |-----------|-------|---| | 2/15/2019 | 1.1.0 | UPDATE - 2.14 - Security Policy option name 'SQL auditing & Threat detection' is longer valid | | 2/15/2019 | 1.1.0 | UPDATE - Ensure audit profile captures all the activities - Remediation CLI change | | 2/15/2019 | 1.1.0 | UPDATE - Ensure log profile captures activity audit and remediation steps | | 2/15/2019 | 1.1.0 | UPDATE - 8.4 Keyvault is recoverable - audit and remediation CLI update | | 2/15/2019 | 1.1.0 | DELETE - Section 4.2 - Redundancy of Controls when intent has already addressed in 4.1 | | | | | | 11/9/2016 | 1.1.0 | Added recommendation 1.3 (Ticket #69) | | 11/9/2016 | 1.1.0 | Updated section 3 remediations (Ticket #88) | | 11/9/2016 | 1.1.0 | 1.4 - Updated commands (Ticket #59) | | 11/9/2016 | 1.1.0 | 1.14 - Updated commands (Ticket #61) | | 11/9/2016 | 1.1.0 | 1.3 - Updated commands (Ticket #58) | | 11/9/2016 | 1.1.0 | 1.13 - Updated commands (Ticket #60) | | 11/9/2016 | 1.1.0 | 4.4 - Updated Remediation (Ticket #67, #68) | | 11/9/2016 | 1.1.0 | 2.1 - Updated remediation (Ticket #66) | | 11/9/2016 | 1.1.0 | 1.14 - Updated Title (Ticket #73) | | 11/9/2016 | 1.1.0 | 3.15 - Moved to section 1 (Ticket #93) | | 11/9/2016 | 1.1.0 | 4.3 - Added note (Ticket #106) | | 11/9/2016 | 1.1.0 | 2.7 - Fixed typo in description (Ticket #54) | | 11/9/2016 | 1.1.0 | 3.1 - Added note to remediation (Ticket #109) | | 11/9/2016 | 1.1.0 | Added Recommendation 1.24 (Ticket 147 P a g e #103) | | 11/9/2016 | 1.1.0 | Standardized benchmark example variables (Ticket #65) | |-----------|-------|--| | 11/9/2016 | 1.1.0 | 1.14 - Updated audit (Ticket #76) | | 11/9/2016 | 1.1.0 | 4.1, 4.2, 4.5 - Added warning (Ticket #87) | | 11/9/2016 | 1.1.0 | 3.2 - Updated audit (Ticket #75, #108) | | 11/9/2016 | 1.1.0 | 1.11 - Updated remediation (Ticket #53) | | 11/9/2016 | 1.1.0 | 2.2 - Fixed typo in description (Ticket #57) | | 11/9/2016 | 1.1.0 | 1.1 - Fixed typo in description and rationale (Ticket #56) | | 11/9/2016 | 1.1.0 | 2.1, 2.5, 2.6, 4.3 - Added notes (Ticket #89) | | 2/1/2016 | 1.0.0 | Initial Release |